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DISPERSION OF NON-LINEAR SHALLOW WATER WAVES
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SUMMARY

Asymptotic solutions representing slowly varying wavetrains are obtained for two kinds of non-linear shallow
water waves, i,e. Korteweg - de Vries waves (cnoidal waves) and Boussinesq waves,

Differential equations for slowly varying parameters are derived and it is shown that some of these
equations can also be obtained by an averaging technique applied to the conservation equations of the problem,
After an asymptotic expansion with respect to the small amplitude/depth ratio equations are given that
determine the slow variations of amplitude, wavenumber, frequency, mean waveheight, etc. It is shown
that these equations are hyperbolic,

A transformation of these equations into their characteristic form shows that-two equations for wavenumber
and energy density uncouple from the other ones. An explicit method of solution is indicated,

1. Imtroduction.

In the theory of wave propagation dispersion is an important phenomenon:
an arbitrary initial disturbance of a wave system disperses into a slowly
varying wavetrain after some time. This is illustrated very strikingly in
the theory of linear waves which are governed by linear partial differential
equations with constant coefficients. Because of the superposition principle
for linear waves it is possible then to give the exact solution of the initial
value problem as a Fourier integral and an asymptotic expansion for large
time by means of the method of stationary phase gives a nearly uniform wave.
Linear dispersive waves are discussed exiensively by Eckart [l], Lighthill
[2], Jetfreys [3], Peletier [4], Brillouin and Sommerfeld [5]." Dispersion
is caused by the fact that in general for linear problemgs each uniform
progressing wave is propagated with a velocity that depends on the wave-
length and hence each component of a spectrum of waves propagates in a
different way, causing the wavetrain to change its form continuously.

For linear wave equations with constant coefficients it is possible to
solve the initial value problem exactly, but difficulties arise immediately
when the coefficients are functions of the coordinates and time (for instance
as a result of an inhomogeneous medium), or when the equations are non-
linear. In these cases the superposition principle is not valid and in fact
exact solutions are not available any more. Only asymptotic theories can
give further information then.

The asymptotic theories that have been developed in recent years are
concerned with finding solutions to wave problems representing slowly
varying wavetrains, i.e. waves that are expected to have developed after
a considerable time and that can be considered locally as nearly uniform.,
The asymptotic treatment is then based on the small variations of quanti-
ties like wavenumber, frequency, amplitude etc. within one wavelength or
period. For linear problems, including the case of variable coefficients,
J.B. Keller and his co~-workers developed the go-called Ray-theory. In thig
connection we mention the papers of Lewis [6], Bleistein and Lewis [7]
and Boersma [8]

For non-linear conservative problems recently several techniques were
developed by Whitham [9, 10,11, 12], which were refined for a special class
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of problems by Lighthill [13,14]. In a first article Whitham [9] derives
equations for slowly varying quantities such as wavenumber, frequency, ampli-
tude etc. by considering a slowly varying wavetrain as locally uni-
form. Then for a uniform wavetrain the conserved quantities which
occur in the conservation equations of the problem are averaged over
one period. The averaged conserved quantities are now considered as
functions of the coordinates and of time in the case of a slowly varying
wavetrain and are substituted again into the conservation equations.
This yields a set of equationsfor amplitude, frequency, wavenumber etc.
as functions of the coordinates and of time.

In a second paper Whitham [lO] introduces an averaged Lagrangian den-
sity method: for a uniform wave the Lagrangian density is averaged over
one _period. This averaged Lagrangian depends on parameters such as
frequency, wavenumber, amplitude and also, depending on the order of the
governing equations, on so-called pseudo-frequencies such as mean height,
mean velocity, etc. In the case of a slowly varying wavetrain these para-
meters are considered again as functions of the coordinates and time and
the FEuler-Lagrange equations for the averaged lLagrangian variational
principle yield a set of partial dlfferentlal equations for the slowly varying
parameters.

In this paper we use an asymptotic expansion for slo wly varying wavetraings
in order to obtain equations for slowly varying quantities for two kinds of
non-linear shallow water waves, viz. Korteweg - de Vries (''cnoidal'’)
waves and Boussinesq waves. A similar asymptotic series was used by
Luke 15] in order to investigate asymptotic solutions of a non-linear
Klein-Gordon equation. It is shown in this paper that the equations for the
slowly varying parameters of the wavetrain can also be obtained by an
appropriate averaging procedure applied to the conservation laws of the
problem. This technique is essentlally different from Whitham's averaging
technique of conservation laws ( [9] The averaged equations are reduced
further by an asymptotic expansion with respect to the amplitude/depth
parameter. For both cnoldal and Boussinesq waves ultimately a hyperbolic
set of two equations for the wavenumber and the energy is derived.

It is shown that these equations have the same form as the equations
for the unsteady one-dimensional motion of a compressible gas with a
fictitious pressure - density relation. A method of solution is given by trans-
formation into an axisymmetric wave equation.

2. Asympiotic vepresentation of slowly varying wavetvains.

The problem is to find asymptotic solutions of non-linear partial differential
equations representing slowly varying wavetrains, i.e. waves that can be
considered as nearly uniform in regions of order of magnitude of some
wavelengths and periods. Takingthe order of magnitude of the slow variations
of wavelength, frequency, amplitude etc. as K™}, with K large, we stretch
the coordinates with this factor K in order to obtain a set of x,t - coor-
dinates in which each unity of x and t contains a large number (of order K)
of wavelengths and periods respectively.

For these coordinates lines of equal phase or wavefronts S(x,t) = constant
can be defined as lines along which the normal derivative of the wave
function u(x,t) is large (order K) compared to the tangential derivative
(order unity). Accordingly it is assumed that the wave function u(x,t) of a
slowly varying wavetrain can be represented asymptotically by

u(x,t) = Uy [KS(x, t), xt]+ Uz [KS(x, t), xt]+o(K2)

Indeed the derivative of u normal to a line S(x,t) = constant is
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du _ -1 1
= lvs| s, [KSXUIP + Upy + S Ugp + o(ﬂ] +
-1 1 _
+ | vs| ™ StI:KSt Uy, + Uy, + 8, Uy, + O(K)] = O(K),

where p = KS(x,t), and the tangential derivative of u is

ou _ -1 1
0= |vs| T (=) [KSXUIP F Upy + S, U+ o(K)] +
-1 1 =
+ | vs|. SX[KStU1P+U1t +stU2p+o(K)] = O(1).

It is also seen that in regions of order 1/K in the x,t - plane the variations
of p=KS(x, t} are of order unity. Hence the dependence of U; on p describes
the rapid local oscillations (it is anticipated that the dependence on p is
oscillatory) and the dependence on x and t describes the large-scale va-
riations of amplitude, frequency, wavelength, etc.

3. The Korteweg - de Vvies equalion.

Korteweg and de Vries [16] considered one-dimensional long waves in
shallow water and derived an equation for the elevation T7j(X,t) of the water
surface above the undisturbed depth h,. This equation may be written as

— — 3_
9 ¢ gn, 1+ 2L + 2 Vghg n® 27 = o, (3.1)
ot 2h o

[~FTRSP]
Nll 3
o =

This equation is valid for small values of the two non-dimensional para-
meters € and u defined by

m

1
D‘I ®
)

by
A'0

where a is a typical amplitude and A, a typical wavelength.
Introducing non-dimensional variables x,t and 7 by means of

_ v gh
- 3 _ g . |
X KOX, ﬁ-o = €1, A’o t t,
eq. 3.1 transforms into
n, + (Lten)n, + ung,, = 0. (3.2)

In eq. 3.2 the wave-height n(x,t), the wave-length and period are all
quantities of order of magnitude one.

it is worthwhile to give some attention to the linearized versions of eq.
3.2.If both € and v« approach zero wegetn; + 7y = 0, whichis a one-directional
wave-equation with general solution

n(x,t) = F(x-t).

This means that an arbitrary disturbance of the free surface is propagated
without distortion withnon-dimensional velocity one in the positive x-direction.



252 H.W.Hoagstraten
This corresponds to the fully linearized shallow water theory in which no
dispersion occurs. For our purposes the linearization with respect to

€ only is more meaningful because the presence of the third order derivative
yields a dispersive linear equation:

My T Myt Mgy = 0. {3.3)
Substitution of a uniform harmonic wave
n = Acos [21r(:<x—wt)]
gives the dispersion relation for eq. 3.3:
w= wylk) = k - 472 uk°, (3.4)
In order to investigate asymptotic solutions of eq. 3.2 representing a

slowly varying wavetrain, the coordinates x and t are sirefched with a large
factor K:

x = Kx¥, t = Kt*,
We then get after omission of the asterisks

u -
N+ (15 emMng + g3 Mgy = 0. (3.5)

Substitution of the asymptotic expansion for a slowly varying wavetrain:
- 1 1
n(x, t) = U[KS(x, £), x,t] + 3 V[KS(x, 0 %, t] + 0(@ )
into eq. 3.5 yields (with p=KS(x, t)):

KS, Up+ U, + Vp S, + (L+ €U+ 2V)KS, U, + U, + V, 8,) +
3
& [K'5,U,, + (3stp o * 35S Upp STV +

+ O(z) = 0. (3.6)

A=

Introducing the local wavenumber k=Sy and the local frequency w=-S; and
equating to zero like powers of K in eg. 3.6, we get

O(K): (k-w)U, + €xUUp + uk Uppp = O, (3.7)

O(1): (k-w)V, + ex(UV, + UV) + uk® Vppp = F(p,x, 1), (3.8)
with

2

F(p,x,t) = -U,; -Uy- €U Uy - 3ulk Uppx + KKXUPP).
Equation 3. 7T may be considered as an ordinary differential equation for U
as a function of p with coefficients depending on x and t. Integrating eq. 3.7
twice with respect to p we find successively:

(k-WU + § €k U+ ug Upp = 3@,

2 1

uk3U§=aU+B+(w-x)U - ~€:<U3, (3.9)

[$]
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with e and 8 unknown functions of x and t figuring as constants of integration.
From eq. 3.9 can be seen that U is a periodic function of p oscillating
between two zeroes Uj and Ug of the righthand side of eq. 3.9. In general
the righthand side of eq. 3.9 has three zeroes. U; and Uy are determined
by the requirement that the righthand side of eq. 3.9 hasto be positive
for Uy <« U< Uy. The dependence of U on p can be given in implicit form
as
U

-1
pt+vy= (MKS)% f [QU+B+(A(;)-K)U2—%€K Us] sz,
U
with v(x,t) as a non-essential shifting constant. The period of U must be
independent of x and t, otherwise differentiation of U with respect to xor
t would result in unbounded terms for large p. Let us normalize the period

of U to unity:
Ug

1 s
3 = (ued)? j [aU+B+(w-n)U2-%€ KUs] “qu. (3.10)
Uy
For a uniform wavetrain w,k, @ and 8 are independent of x and t and eq.

3.10 reduces to an algebraical dispersion relation. For €=0 we have @=0
and B=k-w and then eq. 3.10 becomes

Ff I

NV1-U

which is equivalent to the dispersion relation (eq. 3.4) for the linearized
problem.

We see that there are four slowly varying functions in the problem:
wx, t), k(x,t), e(x,t) and B(x,t), and we are interested in finding four
equations to determine them. KEquation 3.10 together with the relation

Wy + K =0 (3.11)
provide two of them. The two remaining equations are obtained from the
condition of boundedness of the second term V(p,x,t) in the asymptotic
series for n(x,t).

Let us write eq. 3.8 as

9

55 Lk=0) V+ exUV + uid Vo] = Flp,x, t). (3.12)

The tegm between square brackets in eq. 3.12 has to be bounded so

dep‘ + py

must be bounded, with p; a constant of integration. Because F(p, x,t) is
perlodlc in p with period 1, this integral is bounded for large p only if

J’de = 0, {3.13)
which nllay be simplified as
[}Jt + U, + €UU, + 3u( k2 Uppx +:cxxUpp)]dp =
=f[u + U, + eUU,Jdp = 0, (3.14)

by makmg use of the periodicity of U, and Upx.
Equation 3.14 is the third equation containing w,k, @ and 3. The fourth
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equation follows after integration of eq. 3.12 and noting that V=Up is a
solution of the corresponding homogenous equation. Putting V=wU,, we can
write

p

3 B 2 - 3 8 -
HE 8_5(UPWP) = i 55 [V Up - VUPPJ'UP{dep|+p1}'

With the same reasoning as above we have that the term between square
brackets must be bounded and because of the periodicity of the inhomogeneous
term, we have

1

P
fUp [dep’ +p1]dp = 0.
1]

By partial integration we get

[Udep' + UpI] . j UFdp = —JUde = 0,
R
or
1
2 -
!U[Ut + U, +€UU, +3u (KUPPX+ KKXUPP)] dp =0. (3.15)

0
The four equations 3.10, 3.11, 3.14 and 3.15 determine the four functions
wix, t), k(x,t), ofx,t) and B(x,t). In the next section we will show that egs.
3.14 and 3.15 also can be obtained by an appropriate averaging of the
conservation laws of the problem. In section 5 we will give an asymptotic
approximation respect to € that enables us to simplify the equations con-
siderably.

4. Comservation laws for cnoidal waves.

Several conservation laws can be derived from the governing equation 3.5,
Equation 3.5 itself is a conservative equation:

2 3
g(nﬂé;(m%en“l—é%nxx )=0. (4.1)

A second conservation law is constructed by multiplication with 7n:
a a 2, -
né—t(n)+n5}—{(n+%en +R:2nxx)—0, (4.2)
or in comservative form:

%(%ﬂ2)+§x~' [%n2+% en3+I%2 (mex-%”i)] =0, (4.3)
Higher order conservation laws are obtained by multiplication ol n%, n3,
etc., but they will not be needed here. Equation 4.1 may be considered
as an approximate form of the equation of conservation of mass and eq.
4.3 as the corresponding approximation to the equation of conservation of
energy.

Consider now a uniform wavetrain:

nix, t) = U [Kex-wt) k, v, a B, (4.4)

satisfying eq. 3.7 with p=K(kx-wt):
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3 =
(k-w)Up+ ex UUp + uk Uppp = 0. (4.5)

with constants k,w,a,8 satisfying the dispersion relation 3.10. It is assumed
that a slowly varying wavetrain can be represented locally, i.e. in regions
of order K-! in x, t-plane, by the uniform wavetrain solution 4.4 of eq. 4.5
but with slowly varying parameters w(x, t), k(x, t), e(x, t) and B(x, t), that still
satisfy the dispersion relation 3.10. So we put:

n(x,t) = U[p; alx,t), Blx,t), x(x,t), wlx,t)]. (4.6)
with p, = Kk(x,t) and p, = -Kw(x,t). Introducing the notation
Ux = UaQ'x =+ UB Bx + UK Kx + Uw Wy,

and similarly for U, we get after substitution of eq. 4.6 into the con-
servation equations 4.1 and 4. 2:

- KwUp + Uy + (1+eU)(Ke Up + Uy) +
3 2 2 14y
B [K°€ Uppy + K362 Uy + 3k, U | + OlL] = 0, (4.7)

and

U [ -KwU, + U, +(1+€U) (Kk U, + U,) +

3 3 2, 2 1Y) _
+-I’§Q{K K Uppp + K(3K Uy +3:<:<XUPP}] +O(K) = 0. (4.8)

By virtue of eq. 4.5 the terms of order K in egs. 4.7 and 4.8 vanish, and

the remaining parts are averaged over one period in p in order to get
equatlons for the x,t - dependence of the wavetrain:

f [Ut + U, + €U, + 3u(k* Uppy + & KXUPP)] dp + O(IIZ) =
0

1

- 1) .

= J Fdp + O(K) 0,
0

1
jU[U[ + Uy + €UU, + 3 k% ppy + K kyx Upp )| dp + o(lg) =
0 1

= fUde . o(-lﬁ) = 0.

0

These two relations are, apart from terms O(1/K) that can be omitted
within this order of approximation, in exact agreement with the relations
3.14 and 3.15 of the last section.

5. Asympiotic expansion with respect to €.

In this section we will derive equatioas for wavenumber, amplitude, frequency
and mean height that follow after asymptotic expansion with respect to €, viz.
in the case of waves of small finite amplitude.

At first we expand U|p,x,t| in a Fourier series in p with coefficients
depending on x and t. To this end we introduce new functions 7, (x,t), A(x,t)
and @ [p, X, t] by means of
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Ulp.x,t] = no(x,t) + Alx,t) D [p. x. t].
Mo(x,t) = %[Umax(xx t) + Unip (%, t)] : (5.1)

Now A(x,t) has the significance of an amplitude function and @[p,x, t:l is
a periodic function in p with period 1. The introduction of 7Mo(x,t) allows
us to {ix the extremal values of O as -1 and +1. Note that n, is not equal
to the mean waveheight, i.e the averaged value of U over ore period. For
computational reasons the function 7n4(x, t) has advantages and only in a later
stage we will switch to the mean waveheight.

It is possible now to eliminate the functions e(x,t) and B{(x,t) that have
no physical meaning and have them replaced by ng(x,t) and A(x,t). Inser-
ting eq. 5.1 into eq. 3.9, we obtain

ud A2 DF = alne+ AD) + B + (k) (Mo+tADF - 5 e k(n+AD). (5.2)

Using the fact that Qp=0 for both O =-1 and §=+1, we arrive at two
algebraical equations from which @ and B8 can be solved:

dn,+A) + B+ (w-k) 1o+ AP - Fekn, + AF =0,

ong-A) + B + (0-k) (g~ AF - gek(no-AF = 0.

Solving ¢ and B and substitution into eq. 5.2 yields the differential equation
for O (p.x,t):

ux3©g = (1-0%) (%‘EAKQ"‘GKTTO T ok-w). (5.3)

Before proceeding we fix the order of magnitude of A(x,t) and 7. x,t).
It is clear that A is of order unity. For € - 0 we get the linear problem
for which no(x,t) is trivial: the disturbances in the linear case can be
taken symmetrical with respect to the undisturbed state. For € # 0itis
assumed that Mo(x,t) is of order € and hence we put no(x,t) =€n1(x, t),
with n,(x,t) = 0(1) Equation 5.3 becomes

-9 1 .
MKB@§= (I'Q)(EEKA@"’GQKTM"'K‘&))‘ (5.4)
The condition tha} O has period 1 in p yields the dispersion relation
+
bedf [ [(1-09 (Gean® + fomy +e-w] " aD (5.5)

-1 . .

We now apply Lindstedt's method (Minorsky [17]) in order to obtain an
asymptotic expansion of solutions of eq. 5.4 in the form of a Fourier
series in p. Differentiation of eq. 5.4 with respect to p and introduction
of

q=p K-
p k3

yields the equation:

(k-0) (Dgq+ D) = - $€AxD? - En kD + 5 cAk. (5.6)

For € - 0 we have the linearized solution @ = cosq, because, according to
eq. 5.4, we only can take one elementary solution of Qqq+D=0. Essential
for Lindstedt's method is that both @ and g are considered as functions of
a new variable s and both are expanded in a power series in €:
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D(s) = cos s + eDi(s) + e2Dys) + ..., (5.7)

q = s(l +cie+ coe? +,..). (5.8)

The introduction of the unknown constants ¢;, ¢, allows us to avoid secular
terms in the series expansion for Q(s), viz. terms that are not periodic
in s. We have the boundary conditions

D;(0) = Dy(0) = Dy(0) = .... =0,
D, (0) = D,(0) = Dy(0) = ... = 0.
Substitution of egs. 5.7 and 5.8 into eq. 5.6 yields

—coss+€®'1'+E2CDé'+.... +[1+2€c1+€2(c§+2c2)+....]x

2

x(coss+€®1+62®2+...) cos2s+2€®1coss+...)']. (5.9)

_ €Ak (
2(k-w)
The lowest order term vanishes and the coefficient of € yields a differential

equation for O(s):

B]'(s) + Byls) = - 2,005 5 * Gy - Fenw

)cos2s‘ (5.10)

The term -2c¢; cos s in the righthand side would give rise toa term propor-
tional to s cos s in O;(s). This would be a secular term destroying the
periodicity of 0;(S). Hence we take cy=0. The solution of eq. 5.10 satis-
fying the boundary conditions is:

Di(s) = - Iﬁ"%w—)(l—cos 2s).

The differential equation for @2(3) is:

2 9 2.2
@é’(s) + Qz(s) = —'g}% - 2¢cy * _A K cos s - ._A_K_cos 3s. (5.11)
24(k -w)? 24(k -w)?

Here again the term with cos s is a secular term and hence its coefficient
must vanish:

A%g? 1K
c, = . ,
48(k-w)2  2(k-w)

After solving {o(s) and proceeding to the equation for ®j3(s), yielding
cy=0, we get the following asymptotic solution of eq. 5.6:

2 A2p 2
O(s) = cos s - T;ﬁ_j (l-cos 2s) + S—AL(COS 3s - cos s) +
192(k-w)?
+ O ),

with:
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2 .2
q=p /51% s[1+62{ﬂ_._ 227:’;)} +0(e4)] (5.12)

48(k-w)?

The condition that @(p) is periodic with period 1 gives s = 27p andfrom
eq. 5.12 then follows the dispersion relation:

2 o 7]1K
k- = anZukd|1+ e | AR L 4 o). (5.13)
24(k-w)2 KW

This relation also could have been obtained by expansion of the complete
dispersion relation (eq.5.5) with respect to €. Eq. 5.13 is written more
conveniently as:

2
=k -4ampkd + €2p,k - D | 4 oY), (5.14)
96 7% uk

and similarly we have for U(p, x, t):

€A?

U(p,x,t) = en; + A cos(2mp) + =
48 72 uk?

cos(4mp) - 1:' + O(€?).

Introducing the mean value €hy(x,t) of U(p,x,t) by

2
€h (x,t) = en, - ___._€A + O(€?), hy=0(1),
48 72 uk?
we have
_ € A? 2
U(p,x,t) = €h, + A cos(2ap) + ——__ cos(4wp) + O(€”), (5.15)
48 72 uk?
_ 2 A? 4
W = wlk) + € [dll t e R WZHJ + O(€), (5.186)

with the abbreviation:
w (k) = k- 412 u ks,
This is the ultimate form of U(p, x,t) that can be used for substitution into

the integral relations 3.14 and 3.15.
Writing eq. 3.14 as

1 1 1
e} 0 0 2
E[IUdp] + &[!Udpjl +a—X|t%€j'Udp:| =0,
0

and eq. 3.15 as

1 1 1
3
a%[%fUzdpjl +§}—§[%JU2dp} +£{[ée[Udp:| +
0 0
1

1
+ 3un2[jUUppxdp} + 3IJI<KXI:IUUppdp] =0,
0 0

we get, respectively, after substitution of eq. 5.15:
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dh; 8h; B8 ,
— —=t —(3A%) + O(e?) = 0,
ot ox Bx(4 ) (€9

é?-t(A2) - 2 [(1_127r2uK2)A2] L~ O(e?) =0.

Introducing H, = €2h1 and E = €2A®, these last two equations, together with
the dispersion relation can be recasted as follows:

W = wolk) + kKHy + __iE__ wolk) = :c-47rzu1<3, (5.17)
967r2/.u<
9H,
1 -
at " é)T{[H0+ZE] =0, (5.18)

n
[en)

9K | _a_[wo. (K)E] (5.19)

st 9x

Equation 5.18 may be considered as an averaged eguation of conservation
of massandeq. 5.19 expresses the conservation of the '"averaged energy"
E of the wavetrain, which is propagated approximately with the linear group

velocity C, =w, (k). In the next section these equations will be investigated
further.

6. The equations for k,v,E and H,.

In order to find the characteristic velocities of the set of equations 5.17,
5.18, 5.19 we transform equation 5.17 by differentiation with respect to x
and after using 3.11 we then get:

by By
K +w'(kk, + k. H + «kH _ + - = 0. (6.1)
bl * *o * 96ruk 9672ux?

Multiplying egs. 5.18 and 5. 19 by constants A and v respectively and adding
them to eq. 6.1, the condition that k, H, and E are to be differentiated
in the same characteristic direction C gives a set of algebraical equations
for C, X and v:

E

C=w)(k)+H - ———_+ Uw;'(K)E,
96 72 uk?
AC = k + A,
— 1 1 1
vC = ___ _+ A+ Vwo(lc).
96 72 UK

Elimination of A and v gives one equation for C:

[C-w(;(K)]Z N [Ho- __E_} l:C—w(')(K):I +w§(K)E[4(C_1)+_1] (6.2)

96 wzukz 967 %u k

It is seen from eq. 6.2 that for linear waves with H, — 0 and E — Othere
is a double root C = Co =w)(k), viz. the linear group velocity. For non-linear
waves we have H, =0(€?) and E =0(€?) and then two roots C; and Cj lie
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(k) and one root Cz near C=1. The three characteristic velocities

near Co =&}
C; (i=1,2,3) are approximately found to be:
C,p,=C, % \/»;‘(K)E LC—" 1 v o) -
’ (Co-1) 9672 u k
2
= C,t 3 VE + O(e2), (6.3)
kEw](k)
Cg =1+ =+ O(e?) =
4(1-Cy)
= 1. B 1o, (6. 4)
2472 uk?

The characteristic velocities are real and hence we are dealing with a
hyperbolic system of equations, that can be written as follows:

oH oH
oK oK o o oFE oE .
[at Ci ax:’ s [at T Yo jl—'-yi [Bt G ax] 0, i=1,2,3.(6.5)

with multipliers A; and v; given by

AT e T

o= L [ S
i T CC, |5eaTar | HCD) (6.6)

Note that the characteristic velocities Ci do not depend on the mean ele-
vation H, to this order of approximation. Also we note that for i=1 and i=2
(corresponding to the characteristic velocities C; and C, whichlienear the
linear group velocity C, =w!(k)) the multipliers v; and vz are large of
order €-! compared to Aq and Xo because of Ci,9 = C, £0O(€).Because of
the fact that H, and E both are of order €2, the terms containing H, in eq.
6.5. can be omitted for i=1 and i=2. In fact they are of the same order of
magnitude as terms omitted in earlier etages of the analysis. Hence to
the present order of approximation we get lwo equations for the fwo functions
kK and E:

1
ok 1 ek R
5t * (Cotz VE) 3 5% 48712/4K'\/E‘|:8t (Cot3VE) ]
H VR B s L [0 e 3vE) 2] - o
48 12u kVE'

By adding and subtracting these equations we find successively

LS 8k _ 1 9E _

ot G 5x " Sertux ax (6.7)

oE 0 _

Fral a—X(COE) = 0. (6.8)
Making use of C, (k) = 1-1272u K2, we introduce C, as anew dependent

variable:
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oC, 8C,

5
aT_+c08x +§2Y=O, (6.9)
S+ 2 (cE) =0 (6.10)

This remarkable result shows that for cnoidal waves the "energy" E (x,t)
and its propagation velocity C,(x,t) satisfy the one-dimensional unsteady
equations for a compressible gas:

au au 1 9p _
S+t ull + 2 & =
ot T Ysx Tem O
9P

9 -
a_t+ﬁ(”u) =0,

with an "adiabatic law' p = p?%/8. These equations are also similarto the

first order non-linear shallow water equations.

7. The Boussinesq equalions

The Boussinesq equations for one-dimensional shallow water waves are

- _ - o
M g, o, 1y @B (7.1)
ot ox ox 3 0% 5t2

oh , _ oh - &1 _ 7.2
T FUs thg =0 (7.2)

with T(X,t) the horizontal velocity which is taken independent from the
depth, h(x,t) the total depth and h, the undisturbed depth. An interesting
derivation of eqs. 7.1 and 7.2 is given by Whitham [12].

Just as for the Korteweg-de Vries equation these equations hold for small
values of the two parameters € and u defined by

=2
ho

a
€ ==, o= N
B, 37

Introducing non-dimensional variables h,u,x and t:

X = A X, " T =t h=hh, T =uVgh,
we arrive at
3
a—‘tl-+u?1-+g_h+uah=0, (7.3)
0 X X 8X8t2
oh oh du _ (7.4)
a_t+u8_x+ha_}z 0.

Now in egs. 7.3 and 7.4 we have wavelengths and periods of order unity,
h=1+0(e) and u = O(€) Linearization with respect to € and # yields the
fully linearized shallow water equations that display no dispersion:

u, + hy = 0 h, + uy, = 0.
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Linearization with respect to € only gives the dispersive linear system:
a, + hx + “hm = (Q,

ht+ux=0.

Substitution of the harmonic wave

1

u B cos |:27r(:<x—wt)],

h 1 + A cos [27r(l<x —wt)],

gives the dispersion relations for the linear waves
k2 -w?=drluid o,
Aw-Bk =0,

Stretching the coordinates x and t with a large factor K by means of
x = Kx* and t = Kt¥*, we get after omission of the asterigks:

au du . dh _p gh _

ot u ox ox i _\Zaxat2 0, (7.5)
oh oh ou _

ot " Y hax O (7.6)

In order to substitute asymptotic series for u(x,t) and h(x,t) we note that
it is natural to expect that u and h have the same curves S{x,t) = constant
as wavefronts and accordingly we put:

u(x, t) = U[.KS(X, t), x, t:l + I% U, [KS(x, t), x, t:, n O(Kl@)’
h(x,t) = H[KS(x, t),x,t] + & H[KSkx, 1), x, 0] + o(}é),
5

Substitution of these two asymptotic expansions into eqs. 7.5 and 7.6 yields

as terms of order K.
~wU, + kUU, + kHp + pkw Hy, = 0, (7.7)
+ = 7.8
-wH, + kUH, + xkHU, = 0, (7.8)
with « = S,, w=-S, and p = KS(x, t).

The coefficients of order unity yield

(kU —w)U1p + kUpUp + k Hyp + /JKwZHlppp= F(p,x,t), (7.9)
with
Fl(p,x, t) = -Up - UUg - Hy - 20w, “pr +
tukw H o 2kwuH - wQMprx’
and
(kU -w)H, + kG H; + €U Hy+ kHU = Fy(p, x, 1), (7.10)
with

F,(p,x,t) = - H - UH, - HU,.
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Let us give attention to egs. 7.7 and 7.8 first. Integration with respect
to p gives

2
1 2 2 - _(_’-’_
-wU + 3 kU + kH + ukwH, = @ - 55, (7.11)

-wH + kHU =3. (7.12)

Elimination of U from eq. 7.11 by means of eq. 7.12 and then integration
with respect to p results in an equation for H only

uanHg = oH +7v + EZ—H - kH?, (7.13)

with a(x,t), B(x,t) and y(x,t) as constants of integration. From eq. 7.13
follows that H is a periodic function of p oscillating between two zeroes
of the righthand side of eq. 7.13. By virtue of eq. 7.12 we have that U
also is periodic in p with the same period as H and from eq. 7.8 it is
deduced that H, and U, are zero simultaneously and hence H and U are
oscillating in phase. The condition that H and U have a period that is in-
dependent of x and t and that can be normalized to unity, gives the dis-
persion relation

Hmax 5 i
1 “z
L= (ukw?) f [QH +y o+ %1- KHz:, dH. (7.14)
Hmin

The equation w, + k¢ = 0 together with eq. 7.14 provide two equations for
the set of five needed for the five unknown slowly varying functions w(x, t),
k(x,t), olx,t), B(x,t) and y(x,t) The three remaining equations are obtained
again by imposing conditiong of boundedness on the higher order terms U
and H; in the asymptotic expansions of U and H.

Egs. 7.9 and 7.10 which determine U; and H; can be integrated once
with respect to p:

p
(kU-0)U, + ety - uedH, = fF A <y; = Gpx ), (7.15)
(KU - OH, + €HU, = [ F,dp'+ 7, = Gylp, %, t), (7. 16)

with v, and vy, as constants of integration. By the same reasoning as in
sec. 3 we have that G, and G, must be bounded for large p and because
of the periodicity of F; and F, we have:

1

fFldp =0, (7.17)
0

and
1

F,dp = 0. (7.18)

A third integral relation follows after integration of eqs. 7.15and 7.16.
Noting that U; =Up and Hj; =Hp are solutions of the homogeneous equations
corresponding to eqs. 7.15 and 7.16, we have after putting H, = pr and
elimination of Uj:

2 2
- (k U—&))QWHP + szﬂHp+ pKTw (wpp Hp+ 2w, Hpp + wHppp)H =

= KHG, - (kU-w)G,. (7.19)
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From elimination of U, from egs. 7.7 and 7.8 follows
2 2 9 9 -
- (kU-w) Hy +« HHp+ ukw Hprp 0,

and hence the terms with w in eq. 7.19 vanish. After some manipulations
eq. 7.19 is written as

e w® g_p [WPHE:[

H,G +U,Gy =

2 9 .
UKW 5p [Hpﬂlp prﬂl:l.

Again the boundedness of the terms between square brackets requires that
the integral over one period of HPG]L + UpGg vanishes:
1

f(HG + U,Gy)dp = 0, (7. 20)

Partlal 1ntegrat10n gives:

oprGldp fH {fFl o+ v -
- Tu “ Yoo+ %} ] de

0
- jHFl dp,

0
and similarly we ha.ve]L

1
fUPG2dp = - fUdep.

Hence 0eq. 7.20 becgmes
1
| (i, + UE,)ap = 0. (7.21)

The 3 0r'elations 7.17, 7.18 and 7.21 together with the dispersion relation
7.14 and the equation W,+«k,=0 provide a set of five equations for the
five unknown slowly varying functions w(x,t), «(x,t), e(x,t), B(x,t) and
v(x, t)

In close analogy to section 4 we can show that the integral relations
7.17, 7.18 and 7.21 can be obtained by an averaging of conservation laws.
The Boussinesq equations 7.5 and 7.6 are conservation laws:

9 9 (1,2 M =
5 (W~ 5 (zu +h+ thn) 0, (7.22)
2w+ 2 () = o, (7.23)

Equation 7.22 expresses the conservation of momentum and eq. 7.23 the
conservation of mass. A third conservation law follows after multiplication
of eq. 7.5 by h and eq. 7.6 by u:

hlu, + uu, + byt Bye) * u(b, * uhy + huy) = 0, (7.24)
or in conservative form:

i} Lk D (u2+ ip2 + A4 B p2) -

2 (un thht) + o (bu? + 3h - 25 bhy +2K2ht) 0. (7.25)

From eq. 7.24 the structure of integral relation 7.21 becomes clear. If
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again a slowly varying wavetrain is considered locally as auniform wavetrain
with slowly varying parameters k(x,t), w(x,t), a(x,t), B(x,t) and y(x,t) we
can put:

It

u = Ulp,x,t) = Ulps k(x, t), wlx, t), elx, t), Blx, t), v(x, )],

h = Hp,x, t) = H[p:k(x, 1), wlx,t), alx, t), Bx, 1), v(x, )],

with
pyx = Kkix,t) and p, = - Ku(x,t).

Substitution into the conservation equations 7.22, 7.23 and 7.24 then yields
equations of which the highest order terms (of order K) vanish by vir-
tue of equations 7.7 and 7.8 that determine the periodic dependence of
U and H on p. If the remaining parts are integrated over one period in p we
successively arrive at:

1
2
fl:Ut +UU, + Hy + 200w Hyy - ok Hyy - 2k 0Hpp + 2w Hypl dp +
0

1
1 1
oft) - fru o) -

0

1
j[Ht +UHX+HUX] dp = -szdp =0,
0 0

1
1y _
j[HFl + UF, ] dp + O(K> = 0.
0

These integral relations coincide, apart from terms order K™ with egs.
7.17, 7.18 and 7.21 respectively.

8. Asymptotic expansion with vespect to e,

The dependence of the wavetrain on the phase coordinate p =KS(x,t) is
governed by egs. 7.12 and 7.13. As in the case of the cnoidal waves of
Korteweg and de Vries the parameters @, B and v have no clear physical
meaning and in order to be able to express the equations in terms of
amplitude, mean height, mean velocity etc. we put

H(p,x,t) = Hyx,t) + A(x,t) O (p,x,t), (8.1)

U(p,x,t) = Uolx, t) + Bi(x,t) ¥ (p, x,t), (8.2)

with

By, 1) = 4 {Hpaels 8) + Hoyy (5, 0],
tjo(Xat) = %‘[Umax(x: t) + Umin(X,t)}-

Then A and B can be considered as amplitude functions for the waveheight
and velocity respectively. @ and ¥ are periodic functions of p and the in-
troduction of the parameters Ho and U, allows us to take O and ¥ as functions
oscillating between +1 and -1. Note, as in the case of the cnoidal waves, that

H, and U, are not exactly equal to the mean elevation and mean velocity
respectively. Substitution of eqs. 8.1 and 8.2 into eqs. 7.12 and 7.13 gives:



266 H.W.Hoogstraten
(-w+ U, + «kBY¥) (H, + AD) =8, (8.3)

2
92 52 =2 = B w2
= + D 2T = 8.4
pew A Q) = a(H+AQ) + <A AD) k(H,+ A D) (8.4)
From eq. 7.8 follows that H and U are oscillating in phase and hence Q
and ¥ reach their extremal values -1 and +1 simultaneously. Using this

fact egs. 8.3 and 8.4 give rise to four algebralcal equations

B = (Ho+A) [-w+ (U, +B)] = (Hy-B) [-v+ «(T, - B,

2
o(H +A) + v+ (Eo T A B+A) - K(ﬁo+A)2 =0,
BZ
— = - =2
aH -A)+v + m - k(H -A) = 0.

From the first of these equations follows
kH,B - Aw+AxkT, =0, (8.5)

which is one of the two dispersion relations for the problem. Solving e,
B and vy as functions of Hy, Uo, A and B and substituting them into eq. 8.4
we find

. , BY(H2- A?)
P, = (1-09) |1 - ————. (8.6)
A H,+AQ)
The order of magnitude of the parameters A,B,H, and U, in eq. 8.6
is expressed by the substitutions:

A=€¢A, B = €B, Hy = 1+€2n1, I—Io=62ul_ (8.17)

with A, B,n; and u; quantities of order wunity.
Equation 8.5 then yields.

B.w. o) (8.8)

After substitution of eqs. 8. 7 into eq. 8.6 and expanding straightforwardly
with respect to € and using eq. 8.8 in order to eliminate B, we get the
following differential equation for O(p, x, t):

uk® 0y = (1 0P [K2—w2+ €AW D +
+ €2(2 kwug + A%yt - AZ2D2 + wznl) + O(es):l. (8.9)

This equation is the counterpart of eq. 5.4 for the Korteweg- de Vries
waves. The treatment of this equation with Lindstedt's method in order
to obtain an asymptotic.expansion with respect to € of Q(p,x,t) in the form
of a Fourier series is completely analogous to section 5 and will not be
repeated here. The resulting expansion of H(p, x,t) becomes:

€ A2 - [cos(amp) - 1] + O(e?). (8.10)

H = 1+ €A cos(2rp) + €™ + —
167Uk

The condition of periodicity in p with period 1 yields the dispersion relation
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2 2

Ko =ariudw + 62[—2wl<u1— %AQ(:.)2 - wznl s 3Aw +0(€%).(8.11)
3272 uk?

The corresponding series expansion of U(p, x,t) is obtained by using eq.

7.12 and expanding with respect to e:

2 2 2
A% Aw Aw A“w
U = € f‘i;i)cos(27rp) + ez[ul 5 - + < - ——2K> X

1672 uk® 167 1 k3

% cos(4:7rp)] + O(€d). (8.12)

Introducing the mean elevation H, and the mean velocity U, by means of

2
A
€lm - ———|,
1672 k2
A? A2y
U0 €2 l:ul + —'2-K—w - —_— |,
16 72 ux

the expressions for H and U and the dispersion relation 8.11 become
finally:

H,

]

2,2
H=1+H,+ €A cos(27p) + —EA_. cos(4mp) + o(e), (8.13)
16 721 k2
2 2
U=10, +¢€ Aw cos(2wp) + e’ _BAw %’ cos(4mp) + O(e3), (8. 14)
K 16 720 k3 K

3 A2 2

K- = 4r PpkPo? - 20k, - w2H0 + €2 [%Azwz -
3272 ug?

}+O(€3).(8.15)

Dispersion relation 8.15 is written more conveniently as
3
How. TUow? W, E 3
W =W, (k) + + - 1- = | (8.186)
2k2 K 4? 1671 uk
with wy( =K/mandE-e

The series expansions 8.13 and 8.14 for H(p,x,t) and U(p,x,t) are sub-
stituted into the integral relations 7.17, 7.18 and 7.21. Integral relation
7.17 is written as

ATfoe] & v] - 4l fre]
200 u[prpdp] - HKw, [prpdpJ - 2kwn Uprtdp}
+ wlu [Oprpxdp] - 0.

Because of the periodicity in p of Hp, Hpx and Hp: the last four terms
vanish and substitution of 8.13 and 8.14 gives
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aU0

Ew2
O lg, +—| + o?) = o. (8.17)
ot Bx 4K2

Integral relation 7.18 is recasted as

1 1
o 5 _
a—t[ofﬂdp] +a—XU'UHdp] = 0
0

and gives after substitution of 8.13 and 8.14.

BHO 5 Ewo .
5t Uo + 5| + O(€7) = 0. (8.18)

ax

Integral relation 7.21 reads:

= [jUHd +—UU Hdp:l +_[ fHdp] .
- 2w~ ko) [fHprdp} -zw[fﬂﬂpptdp} :

T oUW [fHprxdp:I = 0,

and yields after substitution of U and H use of eq.8.17:

9 A%y 2 |Aw 1,2 2 2
at{W}+ax{m+4A}+2W“[(K°)t'2wwxm +

2 2
T 2kWwAA, - wAAX] + O(e”) = 0. (8.19)
The term between square brackets is equal to

2] 2 0 /1,2 .2
ﬁ (KU)A ) - a_X (2 A- W )J

and using the dispersion relation eq. 8.19 can be transformed into
9 A% ) Agw% 2, _
B_l: }+5§[ K2]+O(€)—O.

O

: ' _ 3,3 .
Using wi(k) = wy/k", we arrive at

&[5« e fww 2 - o -0 (2.20)

!
- 11 k wolk) ) _ 2
[U(; - 5 a—x [w - wo(K.)—:I = O(E ),
equation 8.20 is equivalent to the same order of approximation with:

oz + 2 [wawE] = 0. (8.21)
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This equation which expresses the conservation of "averaged energy" E
propagating with velocity Co, =wik) is of the same form as the 'energy
equation" 5.13 for the Korteweg- de Vries waves,

We have obtained a set of five equations for the five slowly varying
functions k(x,t), w(x,t), E(x,t), Us(x,t), and Ho(x,t), viz. eqs. 8.17, 8.18,
8.21, the dispersion relation 8.16 and the relation wy+ k¢ = 0. In thenext
section we will investigate these equations further, and it will appear that
they can be reduced to a similar system as eqs. 6.9 and 6.10 for the
cnoidal waves.

9. Reduction to a system of equations fov x and E only.

The calculation of the four characteristic velocities C; of egs. 8.16, 8.17,
8.19 and 8.21 proceeds along similar lines as in section 6. Writing eq.
8.16 as

I ! | =
kK FC ket E +afEk, + aoHy +a H k +a, U +aiU &k, =0, (9.1)

where the prime indicates differentiation with respect to ¥ and where

: wg ( 3 1)
o] = — s
ak? 161r2ul<2

ay

we add egs. 8.17, 8.18 and 8.21, multiplied with factors A, o and v
respectively, toeq. 9. 1. The condition that k, E, Uy and Ho are differentiated
in the same characteristic direction yields four algebraical equations for
C,A,0 and v:

C=C, +vEC! +e]E +a)H +aiU +AB'E + ov'E,

vC =a; +AB +oy + vC,,

AC = 0 +ay,

oC = A +ta,,

with abbreviations:

Elimination of A, o and v yields one equation for C:

(C-CO)Z = (C-C,) [al'E tay )+ aj U, + z’E {B'(a:2+a/3C) +
Cc'-1
+ 7r(a3+azc)}] + E C(') [al+ 21 {B(a2+asc) + 'y(as+02c)}] . (9.2)
C -1

For linear waves E—0, H,—0, U,—0, and then we have again a double
root C =C, =wi(k), carresponding to the linear group velocity. For non-linear
waves with € small, it is seen from eqg. 9.2 that there are two roots C;
and C, near C, and two other roots Cg and C, near -1 and +1 respectively.
Approximately we have
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-

Cy,57Cot \/E C(')[al + (Cg—l)—l{ BlaytasC,) +v(egta,C )}] +o(e%)

ECyw? \ 3
= cot\/m[n(wio)ﬁ - (&)4+ 5(w_"0)2- ] +0(e%).  (9.3)

By virtue of w,=k/V1+472uk?, the following inequalities hold:

2 2 K
ClK) =w'(k) <0, CI-1 = [wik)] -1<0, o b

Furthermore the polynomial of the sixth degree in k/w, between square
brackets in eq. 9.3 is positive for k/w,>1 and hence the square root
is real. So there are always two distinct real roots near C,. The two
remaining roots C3 and C, will not be given here; 1t is sufficient to know
that they are real and of order of magnitude £1 + O(€?). So wehave a purely
hyperbolic system, which is written as

[Kt+ci’<x:’+vi [EE+C1EX:’ +o; [H0t+CiHOX + Ay ':Uot + C; Uyl =0,
(i=1,2, 3,4) (9.4)
with multipliers vy, o; and Ajgiven by

1 1
viT T, [a1 * ﬁ{ﬁ(a’gﬂﬁci) * "’(a’a+azci)}] ’

0

as+a,Cy
Giz 3
c?-1
1
a ta, C
o @3
ki— .
Cr-1

As in the case of the cnoidal waves of Korteweg and de Vries we consider
only i=1 and i=2, viz. the characteristic velocities lying near the group
velocity Co,. For i=1 and i=2 we observe that v; is large of order e-1
compared to A; and o; and hence the terms with U, and H, can be omitted
from eq. 9.4 for i=1 and i=2. Noting also that C; and Cq do not depend
on H, and U, to the present order of approximation, we get for i=1 and
i=2 a set of two equations for k(x,t) and E(x,t) only:

I:E +{c -M/ECT} J=o,(9.5)

F(x)

ke +{c0 + W CIF (k) biy +
VEIEF(x)

F(k)
+{CO- VE CAF(K)}KX—\/—;E_“T(\—) l:EtvL{CO—‘\/E CO’F(K)}EJ= 0, (9.6)
J K

where we have used the abbreviation:

F(«k) = uotk) {12(5—)6 - <L)4 +5 <£)2 - J < 0.
16k°[C2(x) - 1] Wo Wo Wo

Addition and subtraction of egs. 9.5 and 9.6 yields the set of equations
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oK 9K oE _

a_t + CO(K) '-a; + F(K} a—}{— - O, (9, 7)
3E . 8 B

5Tt 5% [Co(k)E] = 0. (9.8)

Introducing C, as a new dependent variable eq. 9.7 becomes

29_0 + _629
at % 8x

B
+H(Cy) 3 = g, (9.9)

with f(C,) determined by
£[Co(k)] = Ci(k) F (k).

To the same order of approximation eq. 9.9 can be replaced by

aC, 3Co . @ _
SE°F Co o E{f(co)E} = 0, (9.10)

because the additional term f'(C,)E C,,in eq. 9.10. only contributes to terms
of order €¥2in the characteristic velocities and hence to the present order
of approximation the set of equations 9.10 and 9.8 have the same charac-
teristic form as eqs. 9.9 and 9.8:

ot {Cut VBT } 0,y £ VACTE | Be{c, 2vBTE 1, | -0.

Putting now E = Ef(C,), we have the set of equations

9C, C, . BE _
50 Cogy® * 3z < 0, (9.11)
o | _E 8 _E 7.
Bt [f(Co):| " ax [Co f(CO):[ 0.
— EC!(k)
8E . 0 [ = o
or =+ = |C.E| - k., +C k| =
ot ox I: Y ] f(Co) [ t 07X
_8E | 9 = 4y _
= 50 5 (CoE) + O*) = 0, (9.12)

which is similar to eqs. 6.9 and 6.10 for the cnoidal waves. Hence also
for Boussinesq waves we have the gas dynamics analogy for the 'energy
density' function E(x, t) and its propagation velocity C(x,t)

10. Explicit solution of the dispersion equations.

The dispersion equations 6.9 and 6.10 for the cnoidal waves and 9.11 and
g.12 for the Boussinesq waves both have the same form as the equations
for the unsteady one-dimensional motion of a compressible gas with a
fictitious adiabatic relation between pressure and density. In order to stress
this analogy we write the equations as

u, +uug egpx=0, (10.1)

p, + (pu), =0, (10.2)
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with p(x,t) and u(x,t) of order of magnitude one. Introduction of a new
variable v(x,t) by

vix,t) = 2evp(x,t),

yields the equations

i

u +uu, + 3vv, = 0, (10.3)%

v, + 3vu, + uvy, = 0. (10.3)°

If we consider x and t as functions of u and v, egs. 10. 3% and 10. 3® are in-
verfed into

-x +tuty-zvt, =0, (10.4)
xu+%vtv—utu=0. (10.5)

Introducing a function O =0(u,v) by
D . .

L 8D _ . _

= 3 Vi, 5 % ut, (10.86)
it is seen that eq. 10.4 is satisfied. In order to satisfy eq. 10.3. the function
O(u, v) must satisfy the axisymmetric wave equation

0, + =0 - O, = 0. (10.7)

vv v v

Let us consider the case o1 an initially given slowly varying wavetrain,
i.e. wu(x,o0) and p(x,0) are given functions of x. Elimination of x between
u(x,0) and p{x,0) gives a curve in the u,v-plane that has a distance of
order € from the u-axis, because in our analysis we always have v=0(¢).
On this curve, v=e€g(u) say, we have t=0 and X is a given function of u,
say x=x,(u). From egs. 10. 6 follows that on this curve v= eg(u) the function
O(u, v) must satisfy

0, = 0, O, = xfu).

In this way a boundary value problem for eq. 10.7 is formulated which
bears some resemblance to the axisymmetric slender body theory in super-
sonic aerodynamics. As we are only interested in solutions for small
values (of order €) of v, this problem can be solved approximately in a
simple way by replacing the term Qyy in eq. 10. 7 by x(u) for small values
of v. Then eq. 10.7 reduces to an ordinary differential equation which is
solved easily:

Dlu, v) & Xfu) + $ £g¥u) X (u)1n [igé—lﬂ] + 3 X'(u) [Vz_ezgz(u)] ,

where
Xhu) = xfu).

Lighthill [1 3], proceeding from the averaged Lagrangian principle of
Whitham, also arrived at the axisymmetric wave equation 10.7 in the case
of absence of so-called pseudo-frequencies, such as mean waveheight, mean
velocity etc. In fact this paper shows that for cnoidal waves and Boussinesq
waves a similar theory as expounded by Lighthiil is possible and hence for
a detailed study of boundary value problems arising from eqg. 10.7 in the
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case of an initially given slowly varying wavetrain and also in the case of
various kinds of wave-makers, we refer to Lighthill [13].
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