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SUMMARY 

Asymptotic  solutions representing slowly varying wavetrains are obtained for two kinds of non- l inear  shallow 
water waves, i . e .  Korteweg - de Vries waves (cnoidal  waves) and Boussinesq waves. 

Differential  equations for slowly varying parameters are derived and it is sP.own that some of these 
equations can also be obtained by an averaging technique applied to the conservation equations of the problem. 
After an asymptotic expansion with respect to the  smal l  ampl i tude /depth  ratio equations are given ~hat 
determine the slow variations of ampl i tude ,  wavenumber ,  frequency,  mean  waveheight ,  e tc .  It is shown 
that these equations are hyperbolic.  

A transformation of these equations into their characterist ic form shows that - two equations for wavenumber  
and energy density unconple from the other ones. An explici t  method of solution is indicated,  

1 Introduction. 

In the theory of wave propagation dispersion is an important phenomenon: 
an arbitrary initial disturbance of a wave system disperses into a slowly 
varying wavetrain after some time. This is illustrated very strikingly in 
the theory of linear waves which are governed by linear partial differential 
equations with constant coefficients. Because of the superposition principle 
for linear waves it is possible then to give the exact solution of the initial 
value problem as a Fourier integral and an asymptotic expansion for large 
time by means of the method of stationary phase gives a nearly uniform wave. 
Linear dispersive waves are discussed extensively by Eckart [i], Lighthill 
E2J, Jeffreys [3], Peletier [4], Brillouin and Sommerfeld [5]. Dispersion 
is caused by the fact that-fn general for linear problem-s'each uniform 
progressing wave is propagated with a velocity that depends on the wave- 
length and hence each component of a spectrum of waves propagates in a 
different way, causing the wavetrain to change its form continuously. 

For linear wave equations with constant coefficients it is possible to 
solve the initial value problem exactly, but difficulties arise immediately 
when the coefficients are functions of the coordinates and time (for instance 
as a result of an inhomogeneous medium), or when the equations are non- 
linear. In these cases the superposition principle is not valid and in fact 
exact solutions are not available any more. Only asymptotic theories can 
give further information then. 

The asymptotic theories that have been developed in recent years are 
concerned with finding solutions to wave problems representing slowly 
varying wavetrains, i.e. waves that are expected to have developed after 
a considerable time and that can be considered locally as nearly uniform. 
The asymptotic treatment is then based on the small variations of quanti- 
ties like wavenumber, frequency, amplitude etc. within one wavelength or 
period. For linear problems, including the case of variable coefficients, 
J. B. Keller and his co-workers developed the so-called Ray-theory. In this 
connection we mention the papers of Lewis [6], Bleistein and Lewis [7] 
and Boersma 8 [] 

For non-hnear conservative problems recently several techniques were 
developed by Whitham [9, i0, ii, 12J, which were refined for a special class 
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by Lighthill [13, 14 In a first article Whitham 9 of problems . ]. [] derives 
equations for slowly varymg quantities such as wavenumber, frequency, ampli- 
tude etc. by considering a slowly varying wavetrain as locally uni- 
form. Then for a uniform wavetrain the conserved quantities which 
occur in the conservation equations of the problem are averaged over 
one period. The averaged conserved quantities are now considered as 
functions of the coordinates and of time in the case of a slowly varying 
wavetrain and are substituted again into the conservation equations. 
This yields a set of equations for amplitude, frequency, wavenumber etc. 
as functions of the coordinates and of time. 

In a s e c o n d  p a p e r  W h i t h a m  [10] i n t r o d u c e s  an a v e r a g e d  L a g r a n g i a n  d e n -  
s i t y  m e t h o d :  f o r  a u n i f o r m  wave the L a g r a n g i a n  d e n s i t y  is  a v e r a g e d  o v e r  
one . p e r i o d .  T h i s  a v e r a g e d  L a g r a n g i a n  d e p e n d s  on p a r a m e t e r s  such  as  
f r e q u e n c y ,  w a v e n u m b e r ,  a m p l i t u d e  and a l so ,  d e p e n d i n g  on the o r d e r  of the 
g o v e r n i n g  e q u a t i o n s ,  on s o - c a l l e d  p s e u d o - f r e q u e n c i e s  such  as  m e a n  he igh t ,  
m e a n  v e l o c i t y ,  e t c .  In the c a s e  of a s l o w ly  v a r y i n g  w a v e t r a i n  t h e s e  p a r a -  
m e t e r s  a r e  c o n s i d e r e d  aga in  as  f u n c t i o n s  of the c o o r d i n a t e s  and t i m e  and 
the E u l e r - L a g r a n g e  e q u a t i o n s  f o r  the a v e r a g e d  L a g r a n g i a n  v a r i a t i o n a l  
p r i n c i p l e  y i e l d  a se t  of p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s  f o r  the s l o w ly  Vary ing  
p a r a m e t e r s .  

In th i s  p a p e r  we use  an a s y m p t o t i c  e x p a n s i o n  fo r  s l o w ly  v a r y i n g  w a v e t r a i n s  
in o r d e r  to  ob ta in  e q u a t i o n s  fo r  s l o w l y  v a r y i n g  q u a n t i t i e s  f o r  two k inds  of 
n o n - l i n e a r  s h a l l o w  w a t e r  w a v e s ,  v iz .  K o r t e w e g  - de V r i e s  ( ' c n o i d a l ' )  
w ave s  and B o u s s i n e s q  w a v e s .  A s i m i l a r  a s y m p t o t i c  s e r i e s  was u s e d  by 
Luke  E15] in o r d e r  to i n v e s t i g a t e  a s y m p t o t i c  s o l u t i o n s  of a n o n - l i n e a r  
K l e i n - G o r d o n  equa t ion .  It is  shown  in th i s  p a p e r  tha t  the e q u a t i o n s  f o r  the 
s l owly  v a r y i n g  p a r a m e t e r s  of the w a v e t r a i n  c an  a l s o  be o b t a i n e d  by an 
a p p r o p r i a t e  a v e r a g i n g  p r o c e d u r e  app l i ed  to the c o n s e r v a t i o n  l aw s  of the 
p r o b l e m .  T h i s  t e c h n i q u e  is  e s ~ e n t i M l y  d i f f e r e n t  f r o m  W h i t h a m ' s  a v e r a g i n g  
t e e h n i q u e  of c o n s e r v a t i o n  l aws  ( [9 . J )  The  a v e r a g e d  e q u a t i o n s  a r e  r e d u c e d  
f u r t h e r  by an a s y m p t o t i c  expanszon  wi th  r e s p e c t  to the a m p l i t u d e / d e p t h  
p a r a m e t e r .  F o r  bo th  c n o i d a l  and B o u s s i n e s q  w a v e s  u l t i m a t e l y  a h y p e r b o l i c  
s e t  of two e q u a t i o n s  f o r  the w a v e n u m b e r  and the e n e r g y  i s  d e r i v e d .  

It is  shown  that  t h e s e  e q u a t i o n s  h av e  the s a m e  f o r m  as the e q u a t i o n s  
f o r  the u n s t e a d y  o n e - d i m e n s i o n a l  m o t i o n  of a c o m p r e s s i b l e  gas  with a 
f i c t i t i o u s  p r e s s u r e  - d e n s i t y  r e l a t i o n .  A m e t h o d  of so lu t i o n  is  g iv en  by t r a n s -  
f o r m a t i o n  in to  an a x i s y m m e t r i c  wave eq u a t i o n .  

2. Asymptotic representation of slowly varying wavetrains. 

The problem is to find asymptotic solutions of non-linear partial differential 
equations representing slowly varying wave trains, i.e. waves that can be 
considered as nearly uniform in regions of order of magnitude of some 
wavelengths and periods. Taking the order of magnitude of the slow variations 
of wavelength, frequency, amplitude etc. as K "I, with K large, we stretch 
the coordinates with this factor K in order to obtain a set of x, t - coor- 
dinates in which each unity of x and t contains a large number (of order K) 
of wavelengths and periods respectively. 

For these coordinates lines of equal phase or wavefronts S(x, t) = constant 
can be defined as lines along which the normal derivative of the wave 
function u(x, t) is large (order K) compared to the tangential derivative 
(order unity). Accordingly it is assumed that the wave function u(x, t) of a 
slowly varying wavetrain can be represented asymptotically by 

1 EK /x,t), t ]+ u(x,-t) = U1 [KS(x , t ) ,  x , t ]  + ~  U2 . x,  1 

Indeed the derivative of u normal to a line S(x, t) : constant is 
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Ou -I [KSx Ulp U2p 

+ IVSI "1. St[K-StUIp+U,t +S t U2p+ O ( 1 ) ~  = O(K),  

where p = KS(x, t), and the tangential derivative of u is 

It is also seen that in regions of order I/K in the x, t - plane the variations 
of p=KS(x, t) are of order unity. Hence the dependence of U i on p describes 
the rapid local oscillations (it is anticipated that the dependence on p is 
oscillatory) and the dependence on x and t describes the large-scale va- 
riations of amplitude, frequency, wavelength, etc. 

3. The K o r t e w e g  - de Vr ies  equation. 

[ - ' 1  
Korteweg and de Vries Ll6J considered one-dimensional long waves in 
shallow water and derived an equation for the elevation ~(K, t) of the water 
surface above the undisturbed depth h o. This equation may be written as 

ar~ + ~ ( 1 + 3 ~  ) a~+1 h2 a3~_ 0. ~-~ ~ ~ ~ gv~'o, o~x3 (3.1) 

This equation is valid for small values of the two non-dimensional para- 
meters r and /~ defined by 

h 2 
a o 

= ~o and  6 .  = ~ - ~ ,  

o 

where a is a typical amplitude and k o a typical wavelength. 
Introducing non-dimensional variables x, t and N by means of 

".~ = XoX , 2 h  ~ cr],  Xo = t~ 

eq. 3. 1 transforms into 

t + ( l + e r / ) r / x  + /~r/xx x = O. (3.2) 

In eq. 3.2 the wave-height ~(x,t), the wave-length and period are all 
quantities of order of magnitude one. 

It is worthwhile to give some attention to the linearized versions of eq. 
3.2. If both c and p approach zero weget ~]t + Ux = 0, which is a one-directional 
wave-equation with general solution 

~(x, t) = F ( x - t ) .  

This means that an arbitrary disturbance of the free surface is propagated 
without distortion with non-dimensional velocity one in the pos{tive x-direc tion. 
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This corresponds to the fully linearized shallow water theory in which no 
dispersion occurs. For our purposes the linearization with respect to 
c only is more meaningful because the presence of the third order derivative 
yields a dispersive linear equation: 

r/t + r/x + ~r]xx x = O. (3 .3)  

Substitution of a u n i f o r m  harmonic wave 

rl = Acos [2~(~x-tot)] 

gives the dispersion relation for eq. 3.3: 

: ao(K ) : ~ - 4 r2z~ 3. (3.4) 

In o r d e r  to i n v e s t i g a t e  a s y m p t o t i c  so lu t ions  of eq. 3 .2  r e p r e s e n t i n g  a 
s l o wl y  v a r y i n g  w a v e t r a i n ,  -the c o o r d i n a t e s  x and t a r e  s t r e t c h e d  with a l a r g e  
f a c t o r  K: 

x = K x * ,  t = K t* .  

We then get after omission of the asterisks 

nt + (1 + E~)~ x + ~ ~xxx O. (3 .5)  

Substitution of the asymptotic expansion for a slowly varying wavetrain: 

rl(x, t) =UEKS(x, t), x, t] + ~  V x, 

into eq. 3 .5  y i e l d s  (with  p=KS(x, t)): 

E 
KS t U P +  U t + VpS t + (1+ eU+ ~V)(KSxU p + U x + Vp Sx) + 

2 2 3 Vppp)~ + + + + + 

1 
+ o(K) -- o. (3.6) 

Introducing the l o c a l  w a v e n u m b e r  ~=Sx and the loca l  f r e q u e n c y  w=-St and 
we get  

(3. 7) 

= F ( p ,  x ,  t ) ,  ( 3 . 8 )  

F ( p , x , t )  = - U t - U x -  e U U x -  3~(~ZUppx + ~ U p p ) .  

Equation 3. 7 may be considered as an ordinary differential equation for U 
as a function of p with coefficients depending on x and t. Integrating eq. 3. 7 
twice with respect to p we find successively: 

_ U 2 = i 

2 _ 1 (3 9) ~ 3 U p =  ~ U + ~ + ( ~ _ K ) U  2 ~ e ~ U  3, 

e q u a t i n g  to z e r o  l ike  p o w e r s  of K in eq. 3 .6 ,  

O(K): (K-t0)Up + etcUUp + /dtc3Uppp = 0, 

o(1): (~-to)vp + c ~ ( u %  § upv)  + u~ 3 vppp 

with 
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with a and fl unknown functions of x and t figuring as constants of integration. 
From eq. 3.9 can be seen that U is a periodic function of p oscillating 
between two zeroes U I and U2 of the righthand side of eq. 3.9. In general 
the righthand side of eq. 3.9 has three zeroes. U I and U 2 are determined 
by the requirement that the righthand side of eq. 3. 9 has to be positive 
for U1 < U < U2. The dependence of U on p can be given in implicit form 
as 

u 

P + T  = (/~r189 a U + / 3 + ( w - l c ) U  2 ~ K U  3 dU,  

u 1 
wi th  Y(x,  t) a s  a n o n - e s s e n t i a l  s h i f t i n g  c o n s t a n t .  T h e  p e r i o d  o f  U m u s t  be  
i n d e p e n d e n t  o f  x a nd  t, o t h e r w i s e  d i f f e r e n t i a t i o n  of  U w i t h  r e s p e c t  to x o r  
t w o u l d  r e s u l t  in  u n b o u n d e d  t e r m s  f o r  l a r g e  p.  L e t  u s  n o r m a l i z e  the  p e r i o d  
of U to unity: 

u2 

_ ( / ~ 3 ) ,  w- e dU. ( 3 . 1 0 )  

u 1 
F o r  a u n i f o r m  w a v e t r a i n  w, g,  a a n d  ~ a r e  i n d e p e n d e n t  of  x and  t and  eq .  
3 . 1 0  r e d u c e s  to  an  a l g e b r a i c a l  d i s p e r s i o n  r e l a t i o n .  F o r  ~=0 we h a v e  ~=0 
and  ~=~-co a n d  t h e n  eq .  3 . 1 0  b e c o m e s  

 _j_f _y, 
II; - ~0 -1 /~-al 

which is equivalent to the dispersion relation (eq. 3.4) for the linearized 
problem. 

We see that there are four slowly varying functions in the problem: 
~(x,t), K(x,t), o~(x,t) and 13(x,t), and we are interested in finding four 
equations to determine them. Equation 3. I0 together with the relation 

w x + Ir = 0 ( 3 . 1 1 )  

provide two of them. The two remaining equations are obtained from the 
condition of boundedness of the second term V(p,x, t) in the asymptotic 
series for ~/(x,t). 

Let us write eq. 3.8 as 

a-p ~-to) V + e g U V  + ~K s = F ( p , x , t ) .  (3.12) 

The term between square brackets in eq. 3. 12 has to be bounded so 
P 

/ Fdp~ + Pl 

m u s t  be b o u n d e d ,  w i th  Pl  a c o n s t a n t  of  i n t e g r a t i o n .  B e c a u s e  F ( p ,  x,  t) i s  
p e r i o d i c  in  p wi th  p e r i o d  1, t h i s  i n t e g r a l  i s  b o u n d e d  f o r  l a r g e  p o n l y  i f  

1 

F d p  = 0, ( 3 . 1 3 )  

0 
which n~ay be simplified as 

El-/t + U x + c U U  x + 3/~(g2Uppx + K~:xUpp}]dp = 
i 

= f ~ + Ux + 6 U U x ] d R  = 0, (3.14) 

by  makir~g u s e  o f  the  p e r i o d i c i t y  of  Up a n d  Upx. 
E q u a t i o n  3 . 1 4  is  the  t h i r d  e q u a t i o n  c o n t a i n i n g  co,~, a a n d  t3. T h e  f o u r t h  
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equat ion  fo l lows a f t e r  in teg ra t ion  of eq. 3 .12 and noting that V =Up is a 
solution of the corresponding homogenous equation. Putting V = wUp, we can 
write 

p 

. , 3  p8 UpWg = /~ ~-~ [VpUp - VUpp] = Up F d p ' + p l  . 

With the same reasoning as above we have that the term between square 
brackets must be bounded andbecause of the periodicity of the inhomogeneous 
term, we have 

1 p 

o 
By pa r t i a l  in tegra t ion  we get  

P i i 1 

o o 

o r  
1 

o 

The four equations 3. i0, 3. ii, 3.14 and 3.15 determine the four functions 
t0(x, t), ~(x, t), a(x, t)and ~(x, t). In the next section we will show that eqs. 
3.14 and 3.15 also can be obtained by an appropriate averaging of the 
conservation laws of the problem. In section 5 we will give an asymptotic 
approximation respect to ~ that enables us to simplify the equations con- 
siderably. 

4. Conservation laws f o r  cuoidal waves.  

S e v e r a l  c o n s e r v a t i o n  laws can be d e r i v e d  f rom the govern ing  equat ion 3.5.  
Equat ion  3 .5  i t s e l f  is a c o n s e r v a t i v e  equat ion:  

0~ ~xx r l+ �89  2+ r~xx = 0. (4.1) 

A second  c o n s e r v a t i o n  law is c o n s t r u c t e d  by mul t ip l i ca t ion  with ~: 

or in conservative form: 

oq (�89 + �89 + ~ o t i s +  ~-2 r/xx - ~-r/x = 0 ( 4 . 3 )  
a t  

Higher order conservation laws are obtained by multiplication of ~'~, r/a , 
etc., but they will not be needed here. Equation 4. i may be considered 
as an approximate form of the equation of conservation of mass and eq. 
4.3 as the corresponding approximation to the equation of conservation of 
energy. 

Consider now a uniform wavetrain: 

~l(x, t) = U [ K ( ~ x - w t ) ;  Ir to, o~, 18] ,  ( 4 . 4 )  

sa t i s fy ing  eq. 3. 7 with p=K(ax-~t) :  
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(M-to)Up + e~UUp + u1r Uppp = 0, (4 .5 )  

with constants tc, w,a,~ satisfying the dispersion relation 3. 10. It is assumed 
that a slowly varying wavetrain can be represented locally, i.e. in regions 
of order K -I in x, t-plane, by the uniform wavetrain solution 4.4 of eq. 4.5 
but with slowly varying parameters 0~(x, t), ~(x, t), a(x, t)and/3(x, t), that still 
satisfy the dispersion relation 3. i0. So we put: 

r~(x, t) = u ~p; d x ,  t), t3(x, t), ,,(x, t), t~(x, t ) ] .  (4.6) 

with Px = Kt~(x, t) and  Pt = -Ktd(x, t). I n t r o d u c i n g  the n o t a t i o n  

U x  = Uaax  + U s 19x + U~ ~x + U~o fox, 

and similarly for U t, we get after substitution of eq. 4.6 into the con- 
servation equations 4.1 and 4.2: 

- Ku~Up + Ut + ( I + e U ) ( K ~ U p  + Ux) + 

+ #  EK3t ' :3Uppp+K2(3tcZUppx+3tcKxUpp)]  + : 0, 7, 

and 

u E-K up + us + Up + Ux)'+ 

By virtue ofeq. 4.5 the terms of order K in eqs. 4.7 and 4.8 vanish, and 
the remaining parts are averaged over one period in p in order to get 
equations for the x, t - dependence of the wavetrain: 

1 

f 
0 

1 j o(1): o, 
o 

0 1 

0 

T h e s e  two r e l a t i o n s  a r e ,  a p a r t  f r o m  t e r m s  O ( 1 / K )  t ha t  c a n  b e  o m i t t e d  
wi th in  th i s  o r d e r  of  a p p r o x i m a t i o n ,  in e x a c t  a g r e e m e n t  wi th  the  r e l a t i o n s  
3 . 1 4  and  3 . 1 5  of the l a s t  s e c t i o n .  

5. Asymptotic expansion with respect to e. 

In this section we will derive equations for wavenumber, amplitude, frequency 
and mean height that follow after asymptotic expansion with respect to e, viz. 
in the case of waves of small finite amplitude. 

At first we expand U[p,x, t] in a Fourier series in p with coefficients 
depending on x and t. To this en~ we introduce new functions ~o (x, t), A(x, t) 
and ~ [p,x, t] by means of 
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u[p, t] -- t / §  tl 0 t], 

~o(X,t) : � 8 9  Um~, (:~,t)]. (5.1} 

Now A ( x , t )  h a s  the s igni f icance of an amplitude f unc t i on  and  ~ [ p , x , t ]  is 
a periodic function in p with period i. The introduction of ~o(X, t) allows 
us to fix the extremal values of ~ as -i and +i. Note that ~o is not equal 
to the mean waveheight, i. e the averaged value of U over olie period. For 
computational reasons the function ~o(x, t) has advantages and only in a later 
stage we will switch to the mean waveheight. 

It is possible now to eliminate the functions~(x, t) and ~(x, t) that have 
no physical meaning and have them replaced by ;]o(X, t) and A(x, t). Inser- 
ting eq. 5.1 into eq. 3. 9, we obtain 

/.~a3A202 = ~(r}o+A~ ) + ~ + (to-t~)(r/o+A~) 2 - I ~ ( U o + A r  .(5.2) 

U s i n g  the f a c t  tha t  0 p  = 0 f o r  b o t h  0 = - 1  and  ~ = + 1 ,  we a r r i v e  at  two 
a l g e b r a i c a l  e q u a t i o n s  f r o m  wh ich  ~ and  fi c a n  be so lved :  

~ ( ~ o + A )  + ~ + h 0 - , ~ ) ( n o + A )  2 - �89  +A) .  3 = o, 

o~No-A) + ~ + ( to-~)  ( 8 o - A )  2 1 - ~ e ~ ( r / o - A )  s = 0. 

Solving a and /] and substitution into eq. 5.2 yields the differential equation 
for 0 (P, x, t): 

1 
~ s 0 ~  = ( 1 - ~ )  (~ ~ ,  0 + ~ *~o + ~-~) .  (5.3) 

Before proceeding we fix the order of magnitude of A(x, t)and ~?o(X, t). 
It is clear that A is of order unity. For r 0 we get the linear problem 
for which r~o(x,t) is trivial: the disturbances in the linear case can be 
taken symmetrical with respect to the undisturbed state. For ~ ~ 0it is 
assumed that rTo(x,t) is of order ~ and hence we put ~o(x,t)=cr~(x,t), 
with rTl(x,t ) = 0(i) Equation 5. 3 becomes 

1 ~2 / ~ 0 ~  = ( 1 - 0  2 ) ( ~ e / c A ~  + ~ 1  + ~-to). (5 .4)  

The  c o n d i t i o n  tha t  0 h a s  p e r i o d  1 in p y i e l d s  the d i s p e r s i o n  r e l a t i o n  
+1 

y - (/z'~r �89 ( 1 - 0  2) ( ~ c A K 0  + ~ 1  + dO. (5 .5 )  

-1 
w e  n o w  apply  L i n d s t e d t ' s  m e t h o d  / M m o r s k y  [ 1 7 ] ) i n  o r d e r  to obta in  an 
a s y m p t o t i c  e x p a n s i o n  of s o l u t i o n s  of eq.  5 .4  in the f o r m  of a F o u r i e r  
s e r i e s  in p. D i f f e r e n t i a t i o n  of eq.  5 . 4  wi th  r e s p e c t  to p and  i n t r o d u c t i o n  
of 

q = p ~-~ 

yields the equation: 

1 (k:-t0) ( 0 q q + 0 )  = - ~ c A  K~) 2 - C27/I K~  + ~ s (5. 6) 

For <-, 0 we have the linearized solution ~ = cosq, because, according to 
eq. 5.4, we only can take one elementary solution of 0qq +~ = 0. Essential 
for Lindstedt's method is that both ~ and q are considered as functions of 
a new variable s and bo~h are expanded in a power series in c: 
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0 ( S )  = COS S + e ~ l ( s )  + e 2 ~ 2 ( s )  + . . . .  (5 .  7) 

q = s (1  + c l c +  c2  c2 + . . . ) .  ( 5 . 8 )  

The introduction of the u n k n o w n  constants c I, c 2 , allows us to avoid secular 
terms in the series expansion for ~(s), viz. terms that are not periodic 
in s. We have the boundary conditions 

~ 1 ( 0 )  -- ~ g o )  : O g o )  : . .  : 0, 

t 

0 ~ ( o )  : 0 2 ' ( o )  : 0 ~ ( o )  = . . .  : o .  

Substitution of eqs. 5. 7 and 5.8 i n t o  eq. 5.6 yields 

- t o s s  + sO~ '  + " ~- . . . .  + 1 + 2 c o  1 + C ( c 1 + 2 c  2) + . . . .  x 

E ] E x oss + ( 0 1  + + . . ,  = i+2cc 1 + e ; 2 ( c ~ + 2 c 2 ) + . . .  L 6 ( r . . - w )  - K : - ~  x 

x ( c o s  s + c 0 ~  + ~ 2  + - . .  ) - 2 ( ~ - ~  ( c o s %  § 2 c ff h c o s  s + . . . .  ( 5 . 9 )  

T h e  lowest o r d e r  t e r m  vanishes and the coefficient of E yields a differential 
equation for 01(s): 

~ l ' ( S )  + O l ( S )  : - 2 c l c o s  s + 
A K  .A~  

6(~-c0) 2 ( ~ - ~ )  
- -  cosSs. (5. i0) 

The term -2c I cos s in the righthand side would give rise to a term propor- 
tional to s cos s in ~)l(s). This would be a secular term destroying the 
periodicity of ~)I(S) Hence we take ci=0. The solution of eq. 5. i0 satis- 
fying the boundary conditions is: 

A K  
~ l ( s )  = - 12( to-w) ( 1 - c o s  2 s ) .  

The differential equation f o r  ~ 2 ( s )  is: 

~1~ As Ks 
O~'(s)  + ~ s ( s ) - -  k - ~ _  ~ - 2c s  + s 4 ( ~ - ~ )  s COS S - 

A 2 K 2 
c o s  3 s .  ( 5 . 1 1 )  

2 4 ( ~ - w )  2 

Here again the term with cos s is a secular term and hence its coefficient 
must vanish: 

c 2 

A2 ~2 7] 1~ 

4 8 ( ~ - w )  2 2 ( ~ -  co) 

After solving ~2(s) and proceeding to the equation for ~3(s), yielding 
ca=0, we get the following asymptotic solution of eq. 5.6.. 

~2 _A_2/C 2 
e A ~  ( 1 - c o s  2s)  + ( cos  3s - c o s  s) + 

~)(s)  = COS S 12(tO-W) 192(~_W) 2 

+ o ( ~ ) ,  

w i t h :  
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, l q = p v ~ , ~  = s + e ~ / 4 8 ~ 2 ~ ) 2  + o(0 . ( 5 . 1 2 )  

The condi t ion  that  ~(p) is pe r iod i c  with p e r i o d  1 g ives  s = 2~rp a n d f r o m  
eq. 5. 12 then fol lows the d i s p e r s i o n  re la t ion:  

~:-tO = 4~s .1r  + e 2 ; AS~:2 - r / l i e ; ]  + O(c4). (5 .13 ,  
k94(~_tO)~ ~-tO j j  

This  r e l a t i o n  a lso  could  have been  obta ined  by expans ion  of the c o m p l e t e  
d i s p e r s i o n  r e l a t i o n  (eq. 5 .5)  with r e s p e c t  to e. Eq. 5 .13  is wr i t t en  m o r e  
conven ien t ly  as: 

tO = Ir - 4~'2]-I~ 3 + e 2 iir - + O(e4), (5. 14) 
96 ~2~: 

and s i m i l a r l y  we have for  U(p ,x ,  t): 

U(p,x,t) = r + cA2 [cos('4~'p)- .~1] 
48 ~r2/~ 2 

+ o(r 

Introclucing the m e a n  value  ehl(x , t) of U(p, x, t) by 

eh l (x , t )  = cN 1 e/k2 + O(e2), hl=O(1), 
48 7r 2 ~r 

we have 

r A 2 
U(p,x,t) = eh I + A cos(27rp) + 

48 ~-2 ~:2 

[~ A2 ~ + O(e4), 
tO = tOo(*:) + e2 hl + 96~2].I~ 

cos(4~rp) + O(e2), (5. 15) 

(5. 16) 

with the abbreviation: 

r ) = ~- 47r2~ s. 

This is the ultimate form of U(p,x, t) that can be used for substitution into 
the integral relations 3. 14 and 3.15. 
Writing eq. 3. 14 as 

U d p I  + 8 

and eq. 3.15 as 

1 1 1 

1 1 

+ 3.K2[/UUppxdP] + 3"K'xE/UUppdp] = 0, 

we get, respectively, after substitution of eq. 5.15: 
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Oh I Oh I 8 x 2 2) 
+ + ~ A  ) + 0 ( r  = O, 

at ax 

~-~ (A 2) + ~-~ 1 -127r2#~2)A2 + O(e 2) =0. 

Introducing H o = e2hl and E = e2A 2, these last two equations, together with 
the dispersion relation can be recasted as follows: 

:~Oo(~)  + KHo + 
E 

967r 2/~t~ 
- - ,  C0o(~:) : ~ : -47 r2~K 3, ( 5 . 1 7 )  

at + ~ ~ : O, (5. 18) 

a t  

E q u a t i o n  5. 18 m a y  be c o n s i d e r e d  a s  an  a v e r a g e d  e q u a t i o n  o f  c o n s e r v a t i o n  
of  m a s s a n d e q .  5. 19 e x p r e s s e s  the  c o n s e r v a t i o n  of  the " a v e r a g e d  e n e r g y "  
E of  the w a v e t r a i n ~  w h i c h  is  p r o p a g a t e d  a p p r o x i m a t e l y  w i t h  the  l i n e a r  g r o u p  
v e l o c i t y  C O = ~o'(~:). In the n e x t  s e c t i o n  t h e s e  e q u a t i o n s  wi l l  be  i n v e s t i g a t e d  
f u r t h e r .  

6. The equations f o r  ~,w,E and H o. 

In order to find the characteristic velocities of the set of equations 5. 17, 
5. 18, 5. 19 we transform equation 5. 17 by differentiation with respect to x 
and after using 3. ii we then get: 

K t + t0~(K )gx + KxHo + ~Hox + 
E x E gx 

96~r2~t ~ 96~r2At < 2 
0. (6.1) 

Multiplying eqs. 5.18 and 5. 19 by constants k and v respectively and adding 
them to eq. 6. i, the condition that ~:, H o and E are to be differentiated 
in the same characteristic direction C gives a set of algebraical equations 
for C, 3. and v: 

c + H o - 
E 

96 7r 2 /-t~ 2 

�9 K C  = k:+X, 

96 7r 2 t~: 

Elimination of )t and ~ gives one equation for C: 

= o . (6.2) 
96 7r 2 ~:2" 967r 

It is seen from eq. 6.2 that for linear waves with H o --- 0 and E -* 0there 
is a double root C = Co =to~(t:), viz. the linear group velocity. For non-linear 
waves we have H o =O(e 2) and E O(e 2) and then two roots CI and C2 lie 
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near Co =~0o~(K) and one root C 3 near C=l. The three characteristic velocities 
C i (i=l, 2, 3) are approximately found to be: 

< [ ] + 1 + o ( e ~ )  = C1, 2 = C o -% (~ )E  4(Co_i ) 967rSuK 

= C o--+ �89 V E  + O ( c 9 ,  ( 6 . 3 )  

Cs = 1 + + O(e 3) = 

4 ( 1 - C o )  2 

= 1 - E + O(c3) .  ( 6 . 4 )  
247r2 ;~ a2 

The characteristic velocities are real and hence we are dealing with a 
hyperbolic system of equations, that can be written as follows: 

[0, 0] ,.o 0.o  [ ] 
~-+ Ci~- = 0, i=1,2,3. (6.5) 

with multipliers k i and u i given by 

k i  - C i - l '  

ui Ci -Co 6~r 2 ;a~ 

N o t e  t h a t  t h e  c h a r a c t e r i s t i c  v e l o c i t i e s  Ci do  n o t  d e p e n d  on  the  m e a n  e l e -  
v a t i o n  H o to  t h i s  o r d e r  o f  a p p r o x i m a t i o n .  A l s o  we n o t e  t h a t  f o r  i = l  a n d  i=2 
( c o r r e s p o n d i n g  to  the  c h a r a c t e r i s t i c  v e l o c i t i e s  C 1 a n d  C 2 w h i c h  l i e n e a r  t h e  
l i n e a r  g r o u p  v e l o c i t y  Co =C0o(K)) t he  m u l t i p l i e r s  u 1 a n d  u2 a r e  l a r g e  of  
o r d e r  c -1 c o m p a r e d  to  k l  a n d  k2 b e c a u s e  of  C1,2 = C o + O ( c ) . B e c a u s e  o f  
t he  f a c t  t h a t  H a a n d  E b o t h  a r e  of  o r d e r  c 2  the  t e r m s  c o n t a i n i n g  Ho in  eq .  
6 . 5 .  c a n  be  o m i t t e d  f o r  i = l  a n d  i=2 .  In  f a c t  t h e y  a r e  of  the  s a m e  o r d e r  of  
m a g n i t u d e  a s  t e r m s  o m i t t e d  in  e a r l i e r  e t a g e s  of  the  a n a l y s i s .  H e n c e  to  
the  p r e s e n t  o r d e r  of  a p p r o x i m a t i o n  we g e t  two e q u a t i o n s  f o r  t h e  two f u n c t i o n s  

a n d  E:  

8__K~ + ( C o + � 8 9  a-x _ 48~2/aKV,_ ~ + (Co+ �89  BE a t  = 0, 

oK. , oK 1 ~ + (Co-} v ~ )  ~ ] o~ + (Co-~ V-E') ~ + = o. 
4 8 1 r 2 / ~  K ~  

By adding and subtracting these equations we find successively 

8K + Co OK 1 0E (6.71 

__aE + a__CCoE ) = O. a t  ax 

Making use of Co(K) = 1-127r2~K 2, 
variable: 

(6.8) 

we introduce Co as anew dependent 
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DC~ DE~ DE (6 9) 
at + Co a---Z-+ �88 gg = 0, 

aE ~x  (6 lo )  a--K + (CoE) = 0. 

This remarkable result shows that for cnoidal waves the "energy" E (x, t) 
and its propagation velocity Co(x, t) satisfy the one-dimensional unsteady 
equations for a compressible gas: 

8u + uOU 1 a-~- ys = o, 

a___vvat + ~ (pu) = 0, 

with an "adiabatic law" p = p2/8. These equations are also similar to the 
first order non-linear shallow water equations. 

7. The Boussinesq equations 

The Boussinesq equations for one-dimensional shallow water waves are 

au+ ~ au a~ 1 5o a3~ (7.1) 

aH aE au ( 7 . 2 )  

with ~(Kot) the horizontal velocity which is taken independent from the 
depth, h(x,t) the total depth and ho the undisturbed depth. An interesting 
derivation of �9 �9 �9 . E .3" eqs 7 1 and 7 2 is given by Whitham 12 

Just as for the Korteweg-de Vries equatlon these equahons hold for small 
values of the two parameters c and ~ defined by 

~2 
a o 

E =-~-oJ M = 2" 
3 )t o 

Introducing non-dimensional variables h, u,x and t: 

= koX , ko i = t, h = ho h, ~ : u g%~o~ 

we arrive at  

0u + u 8u Oh 83h ( 7 . 3 )  
0-7- g-if+ g-if+ ~ =  0, ax~t 2 

8h 8h au = (7.4) 
0--~- + u ~--~ + h ~--~ 0. 

Now in eqs. 7.3 and 7.4 we have wavelengths and periods of order unity, 
h = 1 + O(r and u = O(c) Linearization with respect to r and ~ yieldst~e 
fully linearized shallow water equations that display no dispersion: 

u t + h x : O; h t + u x = O. 
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Linearization with r e s p e c t  to c only gives the d i s p e r s i v e  l i n e a r  system: 

+ h  + = 0, ut x /~hxtt 

h t + U x =  0. 

S u b s t i t u t i o n  of  the  h a r m o n i c  w a v e  

u : B c o s  [ 2 ~ r ( ~ x - t o t ) ] ,  

h = 1 + A c o s  [27r( tcx-cot)] ,  

g i v e s  the  d i s p e r s i o n  r e l a t i o n s  f o r  the  l i n e a r  w a v e s  

2 [02 - = 4 ~r2/.tK 2 to2j 

A~a - B K  = 0. 

S t r e t c h i n g  the  c o o r d i n a t e s  x a nd  t w i th  a l a r g e  f a c t o r  K by  m e a n s  of 
x = Kx* and t = Kt;:-', we get after omission of the asterisks: 

8u + u Ou Oh 1~ 03h 

aT ~ + ~ + h - ~ 7 ~  = ~ ( 7 . 5 )  

with 

and 

In order to substitute asymptotic series for u(x, t) and h(x, t) we note that 
it is natural to expect that u and h have the same curves S(x, t) = constant 
as wavefronts and accordingly we put: 

with 

U(X,t) : U [I<_.S(x, t ) ,x,  t] + ~i U1 X, 1 

Substitution of these two asymptotic expansions into eqs. 7. 5 and 7.6 yields 
as terms of order K: 

2 
- ~Up + g U U p  + t~Hp + /~gw Hppp : 0, 

- toHp + g U H p  + g H U p  : 0, 

wi th  m : S x, to=-S  t a nd  p : K S ( x , t ) .  

Thc coefficients of order unity yield 

( g U -  to)Ulp + t~UpU 1 + g H l p  + tttcW2Hlppp= F L ( p , x ,  t), 

F l ( P , x , t )  = -Ut  - U U x -  H ~ -  2toto xt~Hpp + 

+ ;1 ~to t Hpp + 2 ~ to/~ Hpp t - to2/2 Hppx, 

( ~ U - t o ) H l p  + ~UpH 1 + ~U1H p + •HUlp  = F 2 ( p , x ,  t), 

im2(P,X,t  ) : _ H t - UH x - H U  x. 

(7.7) 

(7.8) 

(7.9) 

(7.1o) 

0h + u Oh 0u 
a-i- ~ + h ~ = 0. (7.6) 
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L e t  us  g ive  a t t e n t i o n  to e q s .  7. 7 and  7 .8  f i r s t .  I n t e g r a t i o n  wi th  r e s p e c t  
to p g i v e s  

2 
t02Hpp to - t0U + �89162 + n H  + ~ r  = a - "2-k-' ( 7 . 1 1 )  

- t0H + ~HU = ~. (7.12) 

Elimination of U from eq. 7. ii by means of eq. 7. 12 and then integration 
with respect to p results in an equation for H only 

t~to 2Hp2 = ~H + 7 + ~'~- gH 2, (7.13) 

with a(x, t), ~(x, t) and T(x,t) as constants of integration. From eq. 7.13 
follows that H is a periodic function of p oscillating between two zeroes 
of the righthand side of eq. 7. 13. By virtue of eq. 7. 12 we have that U 
also is periodic in p with the same period as H and from eq. 7.8 it is 
deduced that Hp and Up are zero simultaneously and hence H and U are 
oscillating in phase. The condition that H and U have a period that is in- 
dependent of x and t and that can be normalized to unity, gives the dis- 
persion relation 

Hlnax 

2 2] I !/E I - ~H dH. (7.14) - (~ ~t02) ' ~H +7 + ~-~ 

Hmin 

The equation tox + ~t = 0 together with eq. 7. 14 provide two equations for 
the set of five needed for the five unknown slowly varying functions t0(x, t), 
~(x, t), ~(x, t), ~(x, t) and 7(x, t) The three remaining equations are obtained 
again by imposing conditions of boundedness on the higher order terms U 1 
and H 1 in the asymptotic expansions of U and H. 

Eqs. 7. 9 and 7. I0 which determine U I and H I can be integrated once 
with respect to p: 

P 

+ ~H 1 + ~:~2Hlp p ~  = --~'F 1 dp '  +71 = G l ( P , x , t ) ,  ( 7 . 15 )  (~u -  ~0)u 1 

(~U - ~o)H 1 + ~HU 1 = f F 2 d p ' + 7 2  = G2(p ,x ,  t), ( 7 .16 )  

wi th  71  and  72 a s  c o n s t a n t s  of  i n t e g r a t i o n .  By  the s a m e  r e a s o n i n g  as  in 
s e c .  3 we h a v e  tha t  G 1 and  G 2 m u s t  be b o u n d e d  f o r  l a r g e  p and  b e c a u s e  
of the p e r i o d i c i t y  of F 1 and  F 2 we have :  

1 

fF Idp = 0, (7.17) 

0 
and 

I ~ F 2 dp -- 0. (7.1a) 

A third integral relation follows after integration of eqs. 7.15 and 7.16. 
Noting that U 1 =Up and HI =Hp are solutions of the homogeneous equations 
corresponding to eqs. 7.15 and 7.16, we have after putting H I = wHp and 
elimination of UI: 

2 2 
- (~U-~0) 2 w H p  + ~ 2 w H H p +  /~K to (wppHp+ 2WpHpp+ wHppp)H = 

= k:HG1 _ (,:U_to)G2. ( 7 . 1 9 )  
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F r o m  e l imina t ion  of Up f rom eqs. 7. 7 and 7. 8 follows 

- (KU-to)2Hp + n2HHp + ~n2to2HHppp = 0~ 

and hence the t e r m s  with w in eq. 7. 19 vanish.  Af te r  some manipula t ions  
eq. 7. 19 is wr i t t en  as 

= / . ~ K  t 0 2  ~ - ~  - . 

Again the boundedness  of the t e r m s  between square  b r a c k e t s  r e q u i r e s  that 
the in t eg ra l  over  one pe r iod  of HpG 1 + UpG2 vanishes :  

1 
f (HpG l + : 0. (7.20) Up G2)dP 
o 

Partial integration gives: 

1 f Hp { p f  F 1 ~1tt f HpG ldp : (p')dp' + : dp 

[H { f F l ( P ' ) d p ' + ' g l }  ] - HFldP = 
1 0 0 

= - ~ HF 1 dp, 
I V  

0 
and similarly we have 

1 1 

0 
Hence~ 7.20 becomes  

1 
j (HF + )dp = 0. (7.21) UF 2 
0 

The 3 r e l a t i ons  7.17, 7.18 and 7.21 toge ther  with the d i spe r s i on  re la t ion  
7.14 and the equat ion ~ x  + ~:t = 0 provide a set  of five equat ions for  the 
five unknown slowly va ry ing  funct ions co(x, t), ~(x, t), ~(x, t), fi(x, t) and 
~,(x, t) 

In c lose  analogy to sec t ion  4 we can show that the in tegra l  r e l a t ions  
7.17, 7. 18 and 7.21 can be obtained by an averag ing  of conse rva t ion  laws. 
The Bouss inesq  equat ions 7.5 and 7. 6 a re  conse rva t ion  laws: 

a + h + - ~  8t (u) + ~ (�89 2 /~ htt) = 0o (7.22) 

0Or (h) + ~ (uh) = 0. (7.23) 

Equat ion 7.22 e x p r e s s e s  the conse rva t ion  of m o m e n t u m  and eq. 7.23 the 
conse rva t ion  of m a s s .  A third  conse rva t ion  law follows a f te r  mul t ip l ica t ion  
of eq. 7.5 by h and eq. 7.6 by u: 

h(u t +UUx+ hx+K~--~2 hxtt)+u(ht + u h x +  hux)= 0, 

or  in conse rva t i ve  form:  

(7.24) 

8t K---ff 2K2 w 

From eq. 7.24 the structure of integral relation 7.21 becomes clear. If 
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again a slowly varying wavetrain is considered locally as auniform wavetrain 
with slowly varying parameters ~:(x, t), to(x, t), oe(x, t), ~(x, t) and T(X, t) we 
can put: 

= U(p,  x, t) = U[p;  ,qx, t), ~o{x, t), ,~(x, t), t~(x, t), "r(x, t ) ] ,  U 

h = H(p, x, t) = HFP; ~:(x, t), to(x, t), oe(x, t), /~(x, t), T(x, t)~, 
1 _  J 

with 

Px = K ~:(x, t) arid Pt = - Kto(x, t). 

Substitution into the conservation equations 7.22, 7.23 and 7.24 then yields 
equations of which the highest order terms (of order K) vanish by vir- 
tue of equations 7. 7 and 7.8 that determine the periodic dependence of 
U and H on p. If the remaining parts are integrated over one period in p we 
successively arrive at: 

1 

f [ U t  + UUx + Hx+ 2/2tOtOxHpp-/2fctOtHpp-2tltctoHppt + /~to2Hppx~dp 
o 1 
+ 0 ( 1 )  = -jFldp +O(I) = O, 

1 0 1 

J E H t  + UHx+ HUx~dP = - J F 2 d P  = 0, 
0 1 0 

J E H F 1  + UF2~dP §  : 0. 
0 

These integral relations coincide, 
7.17, 7. 18 and 7.21 respectively. 

+ 

apart from terms order K -1 with eqs. 

8. A s y m p t o t i c  expans ion  wi th  r e s p e c t  to r 

The dependence of the wavetrain on the phase coordinate p=KS(x,t) is 
governed by eqs. 7. 12 and 7.13. ,As in the case of the cnoidal waves of 
Korteweg and de Vries the parameters ~, ~ and ? have no clear physical 
meaning and in order to be able to express the equations in terms of 
amplitude, mean height, mean velocity etc. we put 

n ( p , x , t )  : Ho(x,t)  + A_(x,t) {~ (p ,x ,  t), (8 .1)  

U ( p ,  x ,  t) : U-o(X, t) + ~ (x ,  t) ~ (p, x, t), (8 .2 )  

with 

~o(X, t) 

Then A and B can be considered as amplitude functions for the waveheight 
and velocity respectively. ~ and ~ are periodic functions of p and the in- 
troduction of the parameters Ho and 0o allows us to take ~ and vl" as functions 
oscillating between +i and -i. Note, as in the case of the cnoidal waves, that 
Ho and 00 are not exactly equal to the mean elevation and mean velocity 
respectively. Substitution of eqs. 8. I and 8.2 into eqs. 7.12 and 7.13 gives: 
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( - ~ +  ~Uo + ~ ' ~ ' )  (No +A0) =,a, (8.3)  
~2 

u,c~2A 2 ~ = a(~o+A~D) + ~ + '~(Ho + A C,) - '~(H~ ~9)2 ( 8 . 4 )  

eq. 7.8 follows that H and U are oscillating in phase and hence 
reach their extremal values -I and +i simultaneously. Using this 

eqs. 8. 3 and 8.4 give rise to four algebraical equations 

a(H :o+A- )  + "Y + ,~(-,qo+A) - ~:(ao +A-)~ = o, 

a (~  o- A) + T + ,4Y-g-A------~ - '<CHo-A)~ = 0. 

From the first of these equations follows 

~HoB - Aw +AKU o = 0, (8.5)  

which is one of the two dispersion relations for the problem. Solving a, 
and i, as functions of Ho, Uo0 A and B and substituting them into eq. 8.4 

we find 

2 2 = (1-(~ s) ( 8 . 6 )  
A2(~o + A O)J 

The order of magnitude of the parameters As B,H o 
is expressed by the substitutions: 

= e A ,  ~ = c B ,  N o = 1 + c 2 ~ 1 ,  Uo = ~ 2 u  1. 

w i t h  A,  B,~ l l  a n d  ul  q u a n t i t i e s  of  o r d e r  u n i t y .  
E q u a t i o n  8 . 5  t h e n  y i e l d s -  

and Uo in eq. 8.6 

(8.7) 

B _ ~ + 0(c2). (8.8) 
A 

After substitution of eqs. 
with respect to e and using eq. 8.8 in order to eliminate B, 
following differential equation for ~)(p,x, t): 

2. 2n~2 ~ ~o ~p -- (1-{~2)  K2_ 2 + t A r o  2{D+ 

+ e2(2 ~tou 1 + AZto 2 - A2 to2~  2 + tO2~l) + O(e3) -] . ( 8 . 9 )  

This equation is the counterpart of eq. 5.4 for the Korteweg- de Vries 
waves. The treatment of this equation with Lindstedt's method in order 
to obtain an asymptotic, expansion with respect to e of ~(p,x, t} in the form 
of a Fourier series zs completely analogous to section 5 and will not be 
repeated here. The resulting expansion of H(p, x, t) becomes: 

c2A2 E i] H = I+ eA cos(2~p) + e2N I+ 167r2~jr cos(4~rp)- + O(eS). (8.10) 

8. 7 into eq. 8.6 and expanding straightforwardly 
we get the 

The condition of periodicity in p with period 1 yields the dispersion relation 
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2 2 2 2 [ _ 2 t O g u l  - �89 tO2nl+ 32r2U~2J g - t O  =41r2 to + �9 _ . 3 A 2 2  ] +o(�9 ll) 

The corresponding series expansion of U(p,x, t) is obtained by using eq. 
7. 12 and expanding with respect to e: 

U = �9 A-,tOcos(27rp) + c2[Ul + A2tO A2w 
g 2~ 167r2 ~3 

cos(47rp)] + 0(�9 (8.12) 

Introducing the mean elevation H o and the mean velocity U o by means of 

[ J 1-to = 62 ~1 167r2# z ~: 

Uo = e2 Ul + 2 ~  - 16~- '~-~3J"  

167r #t ~:3 

the expressions for H and U and the dispersion relation 8. ii become 
finally: 

2 A2 
H = 1 +H o + cA cos(2~p) + e cos(4~rp) + O(e3), (8.13) 

16 ~r2~ g2 

u =  + AtO eos(2 p) + [ A tO A tO ] cos(4 p) + (8.14) 
T [_ 16 ~r2~ ~ 3 2g ] 

g2_ to2 = 47r 2~K2 r - 2 to ~U o - tO2H o + e 2 [�89 2 3--- A2to2] +O(e3) . (8 .15)  
32~r2 uK2J 

Dispersion relation 8.15 is written more conveniently as 

2 3 
H o ~03 Uo to o tO o E F 3 ] 

to =tooCK) + ~ + L1 K2.], 
2K 2 g 4K 2 16 2/-~ 

with too(K) = ~/~/i +4~r2~a2'and E = e2A 2 

(8. 16) 

The series expansions 8. 13 and 8.14 for H(p,x, t) and U(p,x, t) are sub- 
stituted into the integral relations 7. 17, 7. 18 and 7.21. Integral relation 
7.17 is written as 

05 ~ [�89 o + 
t 1 1 

+ 2 to tox#t I /Hppdp  ? - /~ntot  I / H p p d p  ] - 2gto/'t [ / H p p t d p ]  + 

1 
+ ~2. [ f H p p x d P  ] = 0. 

0 
B e c a u s e  of the p e r i o d i c i t y  in p of Hp, Hpx and Hpt the l a s t  four  t e r m s  
v a n i s h  and subs t i t u t i on  of 8 .13  and 8 .14  g ives  
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+ a~ + + O(c4) = O. at o ~-Ss ] 

In tegra l  re la t ion 7.18 is r e ea s t ed  as 
1 1 

a I / H a p ]  + 3 [ /  ] 8-[ ~-~ UXdp = 0 

and gives af ter  substi tution of 8. 13 and 8. 14. 

aHo O IU ~ + Et~176 + 
at + ~ 2~J 0(~4) = O. 

(8. 1 2) 

(8.18) 

In tegra l  re la t ion  7.21 reads:  

E /  Pl K j  [ 1 Pl 
a 3"-[ UHd + 3 U2HdpI + ~ � 8 9  + 

o 

+ ,(2~O~Ox-~ao t) [ /HHppdp]  - 2 , ,c~o[/HHpptdpl  + 
1 

0 

and yields after subst i tut ion of U and H use of eq. 8. 17: 

) : ~-~ ~ + ~ L-4-'~K2 + �88 s + fiTr2. (k:~o t - 2~Otax).A 2 + 

+ 2KtoAA t - ~A_Ax] + O(e 2) = 0. 

The te rm between square brackets is equal to 

(8.19) 

a a (�89 

and using the d ispers ion  re la t ion  eq. 8. 19 can be t r ans fo rmed  into 

a FA~ a FA~4]  + o(c~) : o a-~ ,---%-o ] + ~ L - - - ~ J  

~Oo/K , we ar r i ve  at Using ~0'o(~) = 3 3 

t4  +~ to] aX ~-~ (K)  T O(~ 4) = 0.  

By virtue of 

( 8 . 2 0 )  

3 (~_~/ ' 3 (~o) = 1 1 - ~W~ I +~0o(k:)Kxl = 

2 ~ [ ~ - % ( ~ ) ]  = oce2) '  L 
equation 8. 20 is equivalent to the same order of approximation with: 

3E + a [~o~(~)E] = 0 (8.21) 
aT Y~ 
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This equation which expresses the conservation of "averaged energy '~ E 
propagating with velocity Co =s is of the same form as the "energy 
equation" 5. 13 for the Korteweg- de Vries waves. 

We have obtained a set of five equations for the five slowly varying 
f u n c t i o n s  Jc(x, t), t0(x, t), E (x ,  t), Uo (x, t), and  H o ( x ,  t), v i z .  e q s .  8. 17, 8. 18, 
8 . 2 1 ,  the  d i s p e r s i o n  r e l a t i o n  8 . 1 6  a n d  the  r e l a t i o n  s + m t  = 0. In the  n e x t  
s e c t i o n  we wi l l  i n v e s t i g a t e  t h e s e  e q u a t i o n s  f u r t h e r ,  and  it  wi l l  a p p e a r  t h a t  
t h e y  c a n  be r e d u c e d  to  a s i m i l a r  s y s t e m  as  e q s .  6. 9 and  6. 10 f o r  the  
c n o i d a l  w a v e s .  

9. Reduction to a s y s t e m  of  equations f o r  K and E only. 

The calculation of the four characteristic velocities C i of eqs. 8. 16, 8. 17, 
8. 19 and 8.21 proceeds along similar lines as in section 6. Writing eq, 
8.16 as 

~:t + Co gx + a'l E x+ aJ.E ~:x + a,2 Hox + a ' H tCx+ a 3 U o x +  a~Uo tCx = 0, (9.1) 2. o 

where the prime indicates differentiation with respect to ~ and where 

3 

e I : --- 1 

41r 2 16~2~ 2 

3 2 
s too 

~2 = - - . ,  ~3 = -' 
2~ 2 

we add eqs. 8, 17, 8.18 and 8.21, multiplied with factors k, ~ and 
respeetively, to eq. 9. i. The condition that k:, E, Uo and Ho are differentiated 
in the same characteristic direction yields four algebraical equations for 
C , k , ( ~  a n d  ~: 

c = C o + v E c , ;  +aJ.E + a ~ H o + ~ U  o + },./3'E + o-~'E, 

v C  = % + ~,8 + o-.'y + VCo ,  

XC = ~ + ~3, 

o C  = X + a ' 2 ,  

with abbreviations: 

w 2 
= o s 

= _./l 

T 2~' 4~2" 

Elimination of X, o- and u yields one equation for C: 

(C_Co)2 = (C_Co) [~i, E +~H ~ +~$Uo + E I~,(~2+~3C) + 
C2_I 

+-,/,(%+%c)t] +mc,[a + 1 {fl(a2+%c) +.,/(%+%c)}]. 
o I C2_I 

(9.2) 

For linear waves E--,0, Ho---0, Uo--'0, and then we have again a double 
root C = Co = to$(~), corresponding to the linear group velocity. For non-linear 
waves with e small, it is seen from eq. 9.2 that there are two roots C I 
and C 2 near C O and two other roots C 3 and C 4 near -i and +I respectively. 
Approximately we have 
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_ _ / i  4 - + O ( E ~ ) .  

- c o  + ~/1~ ~ q c o t l )  

By vir tue  of ~0o=~/X,/'l +4 7r2~2, ' the following inequali t ies hold: 

(9.3) 

;< 
= ~ " ( ~ ) < o ,  C~-lo = I%0(~)] ~-1 < o, < >  1. Co(M) 

Furthermore the polynomial of the sixth degree in ~/Wo between square 
brackets in eq. 9. 3 is positive for ~/Wo> i and hence the square root 
is real. So there are ahvays two distinct real roots near Co. The two 
remaining roots C a and C 4 will not be given here; it is sufficient to know 
that they are real and of order of magnitude +i + O(e2). So we have a purely 
hyperbolic system, which is written as 

[;(t + C i K x ] +  v i l e t +  CiEx]  +o- i [Hot + CiHox] + k i [Uot + C i Uox] = O, 

(i = 1,2, 3,4) (9.4) 

with multipliers v i, cq and ~-i given by 

~ i -  c i -Co  ~ + @ ~ ( ~ + ~ c i }  + ~ % + ~ c ~ )  , 
C O - 1 L  

~3 + ~2Ci 

c .  2 - i i 

q2+~3Ci 

l 2 C[ - 1 

As in the case of the cnoidal waves of Korteweg and de Vries we consider 
only i=l and i=2, viz. the characteristic velocities lying near the group 
velocity Co. For i=l and i=2 we observe that v i is large of order e -I 
compared to k i and cq and hence the terms with U o and H o can be omitted 
from eq. 9.4 for i=l and i=2. Noting also that C1 and C2 do not depend 
on H o and U o to the present order of approximation, we get for i=l and 
i=2 a set of two equations for ~(x, t) and E(x, t) only: 

~x+  / C ; E F ( ~ ) .  ~+ C o + ~ / r . C ~ F ( ~ )  ~ = 0 , ( 9 . 5 )  

~:t + [Co-  ~/E C~F(g),tg x F(~:) [E + {C o - ~/E CoF(K}~}Et = 0, (9.6) 
~/Co' E F(~) '  

where we have used the abbreviation: 

F ( ~ )  = 

Addition and subtraction of eqs. 9.5 and 9.6 yields the set of equations 
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aK b~: aE + Co(K) ~-f + F(~) ~-Z = o, (9.7) 

bE+ b E] O. a-{- ~-~ Eco(~) = (9. a) 

Introducing Co as a new dependent variable eq. 9. 7 becomes 

aCo + Co aCo bE a--t-- ~ ' -  + f(Co) ~- -- O, (9.9) 

with f(Co) determined by 

f[Co(~8: c,(~)~ ( , , I  

To the same order of approximation eq. 

a t  + C~ ax- + f(Co)E = O, 

9.9 can be replaced by 

( 9 . 1 o )  

because the additional term f'(C o)E Cox in eq. 9. i0. only contributes to terms 
of order ~3/2in the characteristic velocities and hence to the present order 
of approximation the set of equations 9. i0 and 9.8 have the same charac- 
teristic form as eqs. 9. 9 and 9.8: 

+_ : o  

PuLLing now E = El(Co), we have the set of equations 

OCo + Co OCo + OF, ax ~ = 0, ( 9 . 1 1 )  

or aE a E c~(,:) 
~T + ~ [CoE]-  ,lOo ) [ ~ + O o ~ x ]  ~ 

b E +  a - aT  ~ (CoE) + o(c 4) = o, ( 9 . 1 2 )  

which is similar to eqs. 6.9 and 6. i0 for the cnoidal waves. Hence also 
for Boussinesq waves we have the gas dynamics analogy for the "energy 
density" function ]~(x, t) and its propagation velocity Co(X, L) 

i0. Explicit solution of the dispersion equations. 

The dispersion equations 6.9 and 6. i0 for the cnoidal waves and 9. ii and 
9.12 for the Boussinesq waves both have the same form as the equations 
for Lhe unsteady one-dimensional motion of a compressible gas with a 
fictitious adiabatic relation between pressure and density. In order to stress 
this analogy we write the equations as 

u t + u u x + e2px = O, (i0. i) 

p~ + (pu)~ = o, ( l o .  2) 
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with p(x, t) and u(x, t) of o r d e r  of magnitude one. Introduction of a new 
variable v(x, t) by 

v(x,  t) = 2 ~ x/o(x, t), 

yields the equations 

u t + u u  x + �89 x = O, (10.  3) a 

v t + �89 x + u v  x = 0. ( 1 0 . 3 )  b 

I f  we c o n s i d e r  x a n d  t a s  f u n c t i o n s  of  u a n d  v ,  e q s .  1 0 . 3  a a n d  1 0 . 3  b a r e  i n -  
v e r t e d  i n t o  

- 1 _- - X v + U t  v ~ v t  u O, ( 1 0 . 4 )  

Xu+ �89 ut u 0. (I0.5) 

Introducing a function ~=~)(u,v) by 

_~ = - �89 _a0 =x-ut, (i0.6) 
3v 3u 

i t  i s  s e e n  t h a t  eq .  1 0 . 4  i s  s a t i s f i e d .  In o r d e r  to  s a t i s f y  e q .  1 0 . 5 .  the  f u n c t i o n  
~ ( u , v )  m u s t  s a t i s f y  the  a x i s y m m e t r i c  w a v e  e q u a t i o n  

~)vv + L ~ ) v -  ~u~ : 0. (10 .7)  
V 

Let us conslder the case ol an initially given slowly varying wavetrain, 
i.e. u(x, o) and p(x, o).are given functions of x. Elimination of x between 
u(x,o) and p(x,o) gives a curve in the u,v-plane that has a distance of 
order c from the u-axis, because in our analysis we always have v=O(c). 
On this curve, v= ~g(u) say, we have t=0 and x is a given function of u, 
say X=Xo(U). From eqs. i0.6 follows that on this curve v = cg(u) the function 
(~ (u ,v )  m u s t  s a t i s f y  

Ov = o, Ou -- Xo(U). 

In this way a boundary value problem for eq. i0. 7 is formulated which 
bears some resemblance to the axisymmetric slender body theory in super- 
sonic aerodynamics. As we are only interested in solutions for small 
values (of order c) of v, this problem can be solved approximately in a 
simple way by replacing the term ~uu in eq. i0. 7 by Xo(U ) for small values 
of v. Then eq. i0. 7 reduces to an ordinary differential equation which is 
solved easily: 

w h e r e  

x f ( u )  -- xZu).  

Lighthill [13], proceeding from the averaged Lagrangian principle of 
Whitham, also arrived at the axisymmetrie wave equation I0. 7 in the case 
of absence of so-called pseudo-frequencies, such as mean waveheighG mean 
velocity etc. In fact this paper shows that for cnoidal waves and Boussinesq 
waves a similar theory as expounded by Lighthill is possible and hence for 
a detailed study of boundary value problems arising from eq. i0.7 in the 
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c a s e  o f  a n  i n i t i a l l y  g i v e n  s l o w l y  v a r y i n g  w a v e t r a i n  a n d  a l s o  i n  t h e  c a s e  o f  
v a r i o u s  k i n d s  o f  w a v e - m a k e r s ,  w e  r e f e r  t o  L i g h t h i l l  [ 1 3 ] .  
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